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1. Introduction

It is estimated that infertility affects one in seven couples in the UK at some stage in their reproductive
life.1 After over 30 years of experience, in vitro fertilisation (IVF) is now routine medical practice in the
management of infertility, and births following IVF are estimated to account for over 1% of all births in
the UK. This proportion is notably lower than some European countries, reflecting the different policies
of public funding for this procedure.

This paper summarises the growing body of evidence concerning the outcomes of pregnancy, delivery and
early childhood associated with being conceived by IVF and related procedures. For these purposes this
review will include data relating to IVF and associated procedures such as intracytoplasmic sperm injection
(ICSI), blastocyst culture, assisted hatching and genetic diagnosis but will not cover gamete intrafallopian
transfer (GIFT) or ovulation induction alone or with artificial insemination. Unless specifically stated, the
term IVF is used to encompass IVF and any laboratory procedure associated with IVF.

2. Perinatal risks

2.1 Multiple conceptions and multiple births

The single most important determinant of pregnancy and long-term outcome is whether the pregnancy
is a singleton or multiple gestation, irrespective of whether it is a natural or assisted conception.
Furthermore, the risks increase disproportionately in relation to the number of fetuses, with
monozygosity also being associated with higher rates of adverse outcomes. IVF itself appears to increase
the risk of monozygous twins by two-fold compared with natural conception, although the incidence of
monozygotic twins even after IVF remains very low.2 At present, about one in four of all IVF pregnancies
result in a multiple birth in the UK3 owing to the common practice of replacing two or three embryos,
with the vast majority of multiple pregnancies occurring after multiple embryo transfer. Multiple
pregnancy is perceived as an ideal outcome by many parents and indeed for the majority of multiples,
particularly twins, there are no long-term adverse consequences. However, at present it is impossible to
predict who will or will not have complications perinatally or later in life. Consequently, elective single
embryo transfer and limitation in the UK to the transfer of two embryos in women under the age of 40
is a population level strategy to minimise the risks of prematurity and its associated complications and
socioeconomic costs. The aim of this strategy is to reduce IVF-related multiple pregnancy to less than
10% by 2012.4 When multiple pregnancy is diagnosed in a fertility unit, referral to a specialised multiple
birth clinic should be made. This would allow the couple to receive counselling about selective fetal
reduction for triplets and high order pregnancies, as well as specialist prenatal screening and diagnosis.

2.2 Preterm birth

Multiple pregnancy per se is a clear risk factor for preterm birth; however, there is an additional small
but statistically significant 23% increase in the relative risk of preterm birth in IVF twins compared with
natural twins, although the relative contribution of spontaneous or elective preterm birth has not been
identified. Similarly, although in singletons there is an estimated two-fold increased risk of preterm birth
and moderate preterm birth following IVF, the contribution of spontaneous preterm labour is
unknown.5–7 Clearly, spontaneous and elective preterm births have largely different aetiologies,
principally reflecting infection and placental dysfunction, respectively. Consequently, maternal and
treatment factors which are associated with these will have an impact on the overall outcome. For
example, duration and cause of infertility can influence the risk of preterm birth and treatment
characteristics. Treatment requiring donor oocytes or ICSI can influence the risk.8 In addition, early fetal
loss in a multiple gestation can increase the risk of preterm birth for the remaining singleton.9,10 Although
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many of these factors cannot be addressed, accurate estimates of risk will improve counselling and
increase the likelihood of the mother or couple choosing elective single embryo transfer. 

2.3 Low birth weight and small for gestational age

Although prematurity due to multiple pregnancy is a clear risk factor for low birth weight (LBW) 
<2500 g, very low birth weight (VLBW) <1500 g and extremely low birth weight (ELBW) <1000 g,
singleton IVF pregnancies still demonstrate an increased risk of low birth weight compared with
naturally conceived singletons (RR 1.6 95%, CI 1.29–1.98; RR 2.65, 95% CI 1.83–3.84; RR 3.02, 
95% CI 0.12–74.66 for each birth weight category respectively).7 Furthermore, in IVF twin pregnancies,
this increased risk is still evident compared with natural twins (LBW RR 1.14, 95% CI 1.06–1.22,
VLBW RR 1.28, 95% CI 0.73–2.24 and ELBW RR 0.88, 95% CI 0.04–19.40).11 Although prematurity
will partly influence the risk of LBW in singletons, the relative risk of babies being small for gestational
age is also increased by approximately 40–60%, suggesting that factors other than preterm birth are
responsible.5–7 Notably, the number of original fetal hearts observed on ultrasound is a determinant of
the risk of LBW,9,10,12 and inevitably the risk of impaired fetal growth will be partially ameliorated by
elective single embryo transfer.13 However, the characteristics of the mother and father and the treatment
cycle may also influence the risk of LBW8 and these will be harder to address.

2.4 Congenital anomalies

Between 3% and 5% of all infants are diagnosed with a congenital anomaly soon after birth. IVF is
associated with a 30–40% increased risk of major congenital anomalies compared with natural
conceptions.14–16 Notably, this risk is not attributable to the increased risk of congenital anomalies
associated with multiple birth, as even in singleton pregnancies the excess risk remains.15 It appears that
the increased risk is partly attributable to the underlying infertility or its determinants as couples who
take longer than 12 months to conceive also exhibit an increased risk of anomalies (hazard ratio [HR]
1.20, 95% CI 1.07–1.35), although this was not as high as that observed in treated infertile couples (HR
1.39, 95% CI 1.23–1.57).17 The principal anomalies which occur in IVF pregnancies include a range of
gastrointestinal, cardiovascular and musculoskeletal defects and specifically septal heart defects, cleft lip,
oesophageal atresia and anorectal atresia.18,19 Of note, while the relative risk of major congenital
anomalies associated with IVF is in the order of 30–40%, the absolute risk is nevertheless low since
anomalies per se are relatively uncommon. 

2.5 Vertical transmission of genetic diseases

In some cases infertility may be genetic in origin, and successful IVF treatment may therefore facilitate
intergenerational transmission. This has led to concern that children born following these techniques will
express a greater number of genetic abnormalities. There is an increased prevalence of structural
chromosomal abnormalities in infertile men and women: a 4.6% prevalence of autosomal translocation
and inversions in oligospermic men, and a 1.14% prevalence of autosomal reciprocal balanced
translocations in infertile women (general population 0.16%).20,21 However, these structural
abnormalities would normally be detected and subsequent transmission avoided by use of
preimplantation genetic diagnosis (PGD) following karyotyping of men with azoospermia or severe
oligospermia, and in couples with recurrent implantation failure or miscarriage. Microdeletions of the
long arm of the Y chromosome (Yq), in particular the AZF region, can also cause spermatogenic failure
and either oligo- or azoospermia, the latter preventing further vertical transmission.22,23 However, sons
conceived from oligospermic men with Yq microdeletions will inherit this subfertile phenotype, and
further expansion or de novo deletions may occur resulting in a worse phenotype in the offspring.24–28

Although other single gene disorders such as cystic fibrosis are associated with infertility, owing to
congenital absence of the vas deferens, vertical transmission of the common mutations can be avoided
through testing the female partner and performing PGD if she is a carrier. Lastly, there is increasing
evidence that epigenetics may contribute to abnormal embryo and trophoblast development, with IVF
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superovulation and culture conditions capable of inducing epigenetic changes and long-term genomic
imprinting.29,30 To date, nine human imprinting syndromes have been identified, but current evidence
links IVF with only three: Beckwith-Wiedemann syndrome (BWS), Angelman syndrome (AS) and, more
recently, maternal hypomethylation syndrome.31 The overall incidence of these conditions is very low at
less than 1 in 12 000 births (BWS 1 in 13 700, and Angelman syndrome 1 in 16 000) and consequently
routine screening for imprinting disorders in children born after IVF is not recommended. Although
these conditions may represent the extreme end of the epigenetic spectrum, there are potentially much
subtler effects as the type of culture media used can profoundly affect birth weight in humans32 and
animals – the so-called large offspring syndrome in cattle and sheep.33 Similarly, administration of
exogenous hormones to induce oocyte maturation in vivo, as well as in vitro, may hamper the proper
acquisition of maternal imprints during oogenesis and both maternal and paternal methylation-
dependent imprints during embryo development in a dose-dependent manner.34,35

2.6 Perinatal mortality

Some caution should be taken in the interpretation of the pooled findings relating to perinatal mortality
and IVF because of a particular lack of consistency in results across the studies pooled and the influence
of one particularly large study.5 However, accepting this, the overall pooled result suggests there is nearly
a 70% increase in the risk of perinatal death for IVF singletons compared with natural conceptions.5 A
recent prospective follow-up study of 20 166 singleton pregnancies compared the risk of stillbirths
between fertile women, subfertile women (time to natural conception greater than 12 months) and
women pregnant after fertility treatment (IVF and non-IVF assisted reproductive technique [ART]).36

Only women who conceived with IVF had a statistically significant four-fold increased risk of stillbirth
compared with fertile women. This would suggest that the increased risk of stillbirth is associated with
treatment-related factors to a greater degree than infertility/subfertility itself. However, this is in contrast
to the findings from three studies of perinatal mortality in singletons conceived naturally following a
prolonged time to conception, which found a two- to three-fold increased risk of perinatal death
compared with singletons naturally conceived without a prolonged time to conception.37–39 The results
for twins are similarly inconsistent, but the combined results do suggest that, having adjusted for
confounders, there is a decrease in the risk of perinatal death in IVF twins of between 16% and 42%
compared with natural twins, potentially reflecting the lower incidence of monozygotic twins after IVF.5

3. Specific IVF and related procedures

3.1 Preimplantation genetic diagnosis/screening

Preimplantation genetic diagnosis/screening (PGD/PGS) requires the removal of one or more blastomeres
from the embryo for genetic testing, thereby allowing the transfer of unaffected embryos. Despite the
removal of a variable amount of material from the developing embryo, the overall prospect for children
appears in line with standard ICSI.40,41 However, PGD/PGS has been associated with a substantial
increased risk of perinatal death compared with standard ICSI (4.6% versus 1.9%; OR 2.56). When
stratified for multiple births, perinatal death rates among PGD/PGS singleton and ICSI singleton children
were similar (1% versus 1.3%), but there were significantly more perinatal deaths seen in post-PGD/PGS
multiple pregnancies compared with conventional ICSI multiple pregnancies (11.7% versus 2.5%), and
this was not attributable to an increased prevalence of monozygotic twins.42 Notably, all of these
perinatal mortality rates are substantially higher than the general population rates, and further research
is required to elucidate the time of death to determine whether timing of induction of labour could be
altered to minimise the risk at term. 

3.2 Blastocyst culture

The extended culture of embryos in vitro from the traditional day 2 (cleavage-stage) transfer date to day
5 (blastocyst stage) has been advocated as a means of improving embryo selection and thus pregnancy
rates. The embryo is sequentially cultured in different media to facilitate in vitro development. In a
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Cochrane review, the evidence of a significant difference in live-birth rate per couple between the two
treatment groups was detected in favour of blastocyst culture (day 2/3: 29.4% versus day 5/6: 36.0%).43

A systematic review and meta-analysis has demonstrated that the probability of live birth after fresh IVF
is 40% higher after blastocyst-stage embryo transfer compared with cleavage-stage embryo transfer
when equal number of embryos are transferred.44

Studies in different animal models have raised some concerns about potential deleterious effects of
extended embryo culture, including imprinting disorders, overgrowth, behavioural abnormalities as well
as cardiovascular and metabolic dysfunction.45–48 In the human, a sex ratio in favour of males has been
associated with blastocyst culture.49 After adjusting for confounders, the risk of preterm birth among
singletons was significantly greater after blastocyst-stage transfer than after cleavage-stage transfer; the
risk of congenital malformations was also significantly higher.50 The odds of any congenital
malformation versus population figures was 50% higher after blastocyst transfer whereas after cleavage-
stage transfer it was only 11% higher. These differences in outcome may be attributable to an increase
in monozygotic twinning; however, there are conflicting data regarding blastocyst transfer and the risk
of monozygotic twinning. A retrospective study has demonstrated that monozygotic twinning is not
increased after single blastocyst transfer compared with single cleavage-stage embryo transfer,51 whereas
other authors have concluded that blastocyst culture is associated with an increased risk of monozygotic
twinning.49,52 These differences might be related to a variation in culture media. Elective single blastocyst
transfer is an effective option to decrease the risk of multiple birth while maintaining a high pregnancy
rate. Nevertheless, the possible risks associated with the extended period in culture require continuing
surveillance of the children born after blastocyst transfer.

3.3 Assisted hatching 

Assisted hatching (AH), a technique whereby the zona pellucida is disrupted to facilitate implantation,
has recently been shown to enhance clinical pregnancy rates (OR 1.29, 95% CI 1.12–1.49) but not live
birth (OR 1.13, 95% CI 0.83–1.55) nor to reduce multiple pregnancy rates (OR 1.67, 95% CI
1.24–2.26).53,54 The long-term impact on the pregnancy and offspring is, however, unknown.

3.4 In vitro maturation 

Immature oocyte retrieval and subsequent oocyte maturation in vitro (IVM) without any ovarian
stimulation is a new development in ART. IVM gives the benefits of ovarian stimulation – namely, more
oocytes – without the risks of ovarian stimulation. Patients with polycystic ovary syndrome (PCOS) or
polycystic ovaries represent a good indication for IVM. Over 1000 babies have been born worldwide
following IVM and, although formal prospective paediatric follow-up studies are limited, similar
obstetric outcomes and congenital anomaly rates between babies born following IVM, IVF and ICSI
have been reported.55 Neurological development of IVM children at 2 years of age also appears to be
normal, although this conclusion is based on only 67 children.56,57

4. Long-term outcomes for children

The physical, neurological and developmental health of children born after IVF is certainly one of the
most important aspects when discussing the potential adverse effects of IVF.58 Overall, the neuromotor,
cognitive, language and behavioural outcomes in children born following IVF or ICSI appears to be
similar to children conceived naturally.59–62 The only consistent adverse finding has been an increased risk
of cerebral palsy, which is partly, but not wholly, explained by the increased risk of preterm delivery
(unadjusted OR 2.18, 95% CI 1.71–2.77).63 With respect to children’s growth, there appears to be little
impact at age 12.64

The Barker hypothesis predicts that adverse antenatal conditions can lead to long-term consequences in
the adult. For example, under-nutrition during pregnancy is associated with an increased risk of coronary
heart disease, type 2 diabetes, stroke and hypertension.65 It is therefore legitimate to question if IVF might
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be associated with cardiometabolic disturbances occurring in adulthood or even earlier during
adolescence. Ceelen et al. have observed that peripheral adipose tissue mass was higher in IVF children.66

The same authors have also reported cardiometabolic differences in children born after IVF, with
approximately a 4 mmHg and 2 mmHg increase in systolic and diastolic blood pressure respectively and
an increase in fasting glucose, with none of these differences explained by confounders including current
body size, birth weight, and other early life factors or by parental characteristics, including subfertility
cause.67 Moreover, these authors have suggested that early childhood growth (weight gain) might predict
cardiovascular risk factors (blood pressure and body fat composition) in IVF children.68 These important
data strongly emphasise the need for metabolic epidemiological studies in IVF adolescents and adults.

5. Maternal morbidity

5.1 Maternal age

Increasing maternal age is a risk factor for almost all pregnancy and perinatal complications. The average
age at which women attempt to conceive continues to rise and consequently IVF is increasingly used by older
women who are already predisposed to pregnancy complications. However, even when comparing age-
matched controls there appears to be an increased risk of complications associated with infertility, with a
higher rate of caesarean section delivery, obstetric haemorrhage, pre-eclampsia, pregnancy-induced
hypertension and gestational diabetes all noted in older women having IVF.69,70 All of these conditions are
associated with unfavourable perinatal outcomes for the neonate, including preterm delivery, low birth
weight and admission for neonatal intensive care. By virtue of their age, older women are more likely to have
pre-existing comorbidities further complicating their pregnancy course and outcome. Importantly, women
with significant comorbidities, regardless of their age, should receive pre-IVF assessment and counselling.

5.2 Recipients of donor oocytes

With delays in the age at which women attempt to conceive, an increasing number of women are using
oocyte donation, a technique previously limited to women with premature ovarian failure. Again there
appears to be an increase in early pregnancy and perinatal complications, with the risk of pregnancy-
induced hypertension in particular ranging from 16% to 40% of cases, with the greatest risk observed
in primiparous women.12,71 Despite these risks, there is almost no information on the long-term outcomes
of egg donation pregnancies for the mother and her child.

5.3 Polycystic ovary syndrome

PCOS, as defined by the 2003 Rotterdam criteria, is a common condition affecting 6–10% of
reproductive-aged women.72–74 Metabolic syndrome is often encountered in PCOS and obesity is a classic
clinical manifestation. Long-term risks include an increased risk of type 2 diabetes and there is some
evidence of an increased risk of cardiovascular events.75,76 In these women, the presence of infertility
caused by anovulation often requires treatment such as ovulation induction with clomifene citrate,
ovarian stimulation with gonadotrophin and IVF. Pregnancy outcomes in women with PCOS were
analysed in a meta-analysis.77 The results indicate an increased risk of gestational diabetes (OR 2.94,
95% CI 1.70–5.08), pregnancy-induced hypertension (OR 3.67, 95% CI 1.98–6.81), pre-eclampsia (OR
3.47, 95% CI 1.95–6.17) and preterm birth (OR 1.75, 95% CI 1.16–2.62). In addition, an increased
risk of admission to neonatal intensive care (OR 2.31, 95% CI: 1.25–4.26) and higher perinatal
mortality (OR 3.07, 95% CI 1.03–9.21), which were not related to multiple births, have been observed.
These data highlight the importance of pre-ART counselling of women with PCOS and emphasise the
need for weight management before ART.

6. Antenatal screening

Use of first-trimester combined ultrasound and biochemical screening for Down syndrome is now
recommended;78 however, the effect of IVF is largely ignored. Notably, pregnancy-associated plasma
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protein-A (PAPP-A) levels are significantly lower in fresh transfer IVF pregnancies, the consequence of
which is an increased risk of receiving a false-positive result and increased odds of having a chorionic
villous sampling or amniocentesis.79,80 However, this increase in false-positive rate was not confirmed in
a recent, smaller, study.81 This may reflect the relative inaccuracy of ultrasound dating, with the precise
dating available for IVF pregnancies being largely ignored.82–84 Further larger studies will be required
before recommendations for adjustment of risk calculations for IVF pregnancies can be made. 

7. Contribution of the subfertile phenotype

Although many of the above studies have used normal controls as the comparator, it is increasingly clear
that the factors which predispose to infertility are also linked with adverse perinatal outcomes, with
subfertility acting as a proxy for this. Therefore, in the future researchers trying to determine the
individual effect of a novel technique or infertility treatment should consider also using women with a
prolonged time to natural conception as the comparison group.60,85 This will allow delineation of whether
the IVF procedure itself or factors inherent to the couple and their infertility are associated with any
adverse outcome. 

8. Opinion

While it is clear that IVF pregnancies are at increased risk of adverse perinatal outcomes, it is also the
case that the majority of the children born following IVF will have a good outcome. For those with
poorer outcomes this inevitably reflects aspects of the treatment but also the interplay with the
underlying features that the couple bring to the pregnancy. Further research is needed to untangle this
complex relationship to allow effective targeted interventions. Given the known risks associated with
IVF pregnancies, risk assessment is required during antenatal care with appropriate referral.86 The
adoption of elective single embryo transfer provides a clear example of how treatment strategies can be
altered to improve outcomes. At present the long-term follow-up studies on children born following IVF
are largely reassuring once the confounding factors of prematurity and multiple gestation are removed.
However, with the continued refinement of the technical process and clinical application of novel
developments, continued surveillance is a prerequisite.
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