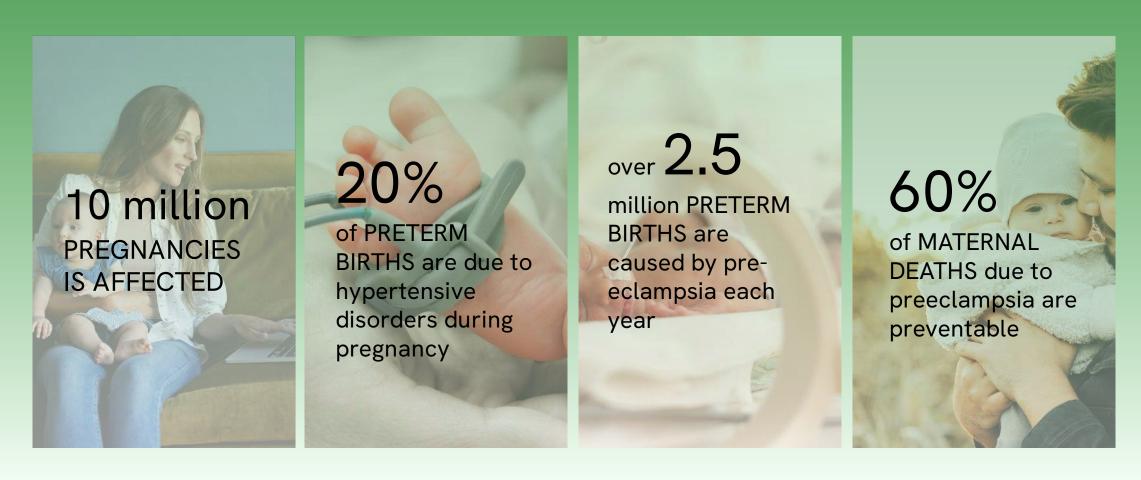
Pre-eclampsia: From prevention to diagnosis of high-risk pregnancies

Telle Ukonaho


Maternal-Fetal Health

Reproductive Health Business, Revvity

revvity

$40\ 000$ moms and $500\ 000$ babies lose their lives every year

PRE-ECLAMPSIA AFFECTS BOTH MOTHER AND THE CHILD ALSO LATER IN LIFE

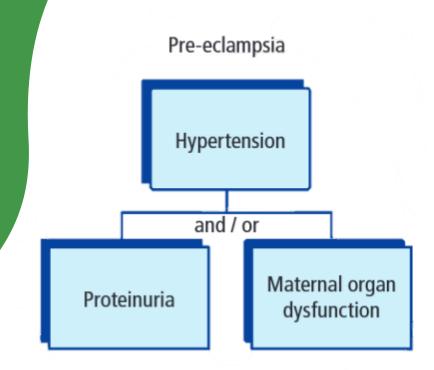
$40\ 000\ \text{moms}$ and $500\ 000\ \text{babies}$ lose their lives every year



20%
of PRETERM
BIRTHS are due to
hypertensive
disorders during
pregnancy

over 2.5
million PRETERM
BIRTHS are
caused by preeclampsia each
year

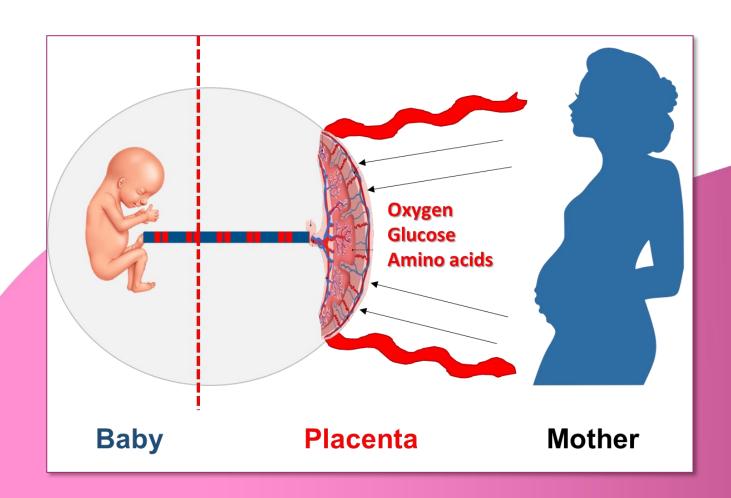
60% of MATERNAL **DEATHS** due to preeclampsia are preventable


AVOIDING THIS CONDITION WOULD BRING SUBSTANTIAL IMPROVEMENTS TO MATERNAL AND FETAL HEALTH AND TO COSTS

Pre-eclampsia introduction

- Pre-eclampsia is one of the leading causes of maternal and perinatal morbidity and mortality
- Symptoms start after 20th week of gestation
- Pre-eclampsia is a multisystem disorder of pregnancy, clinically defined by hypertension and protein in the urine. In the absence of proteinuria, the finding of maternal organ dysfunction can serve as an indicator of pre-eclampsia
- As the only cure for pre-eclampsia after onset is delivery, pre-eclampsia often leads to premature delivery of the fetus
- Both the mother and her baby are at increased risk of serious health complications and even death

AVOIDING THIS CONDITION WOULD BRING SUBSTANTIAL IMPROVEMENTS TO MATERNAL AND FETAL HEALTH



40% of patients with new-onset hypertension or new-onset proteinuria will develop pre-eclampsia.

Barton & Sibai. Obstet Gynecol. 2008

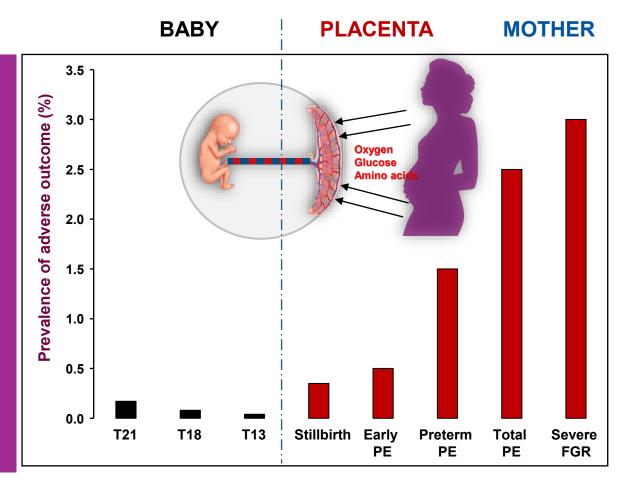
MAKING A BIG DIFFERENCE IN PREGNANCY CARE

Professor Ranjit Akolekar, Medway Maritime Hospital, UK.

"The success of the pregnancy is dependent on three factors; the baby, the placenta and the mother.

Every one of them has to be in absolutely good health to be able to have <u>a healthy outcome</u> for both the mother and the baby.

If we want to improve the health of the mothers and babies, we need to devote time, effort, resources and energy into screening for placental health, because that is far more likely to improve pregnancy outcomes than anything else "

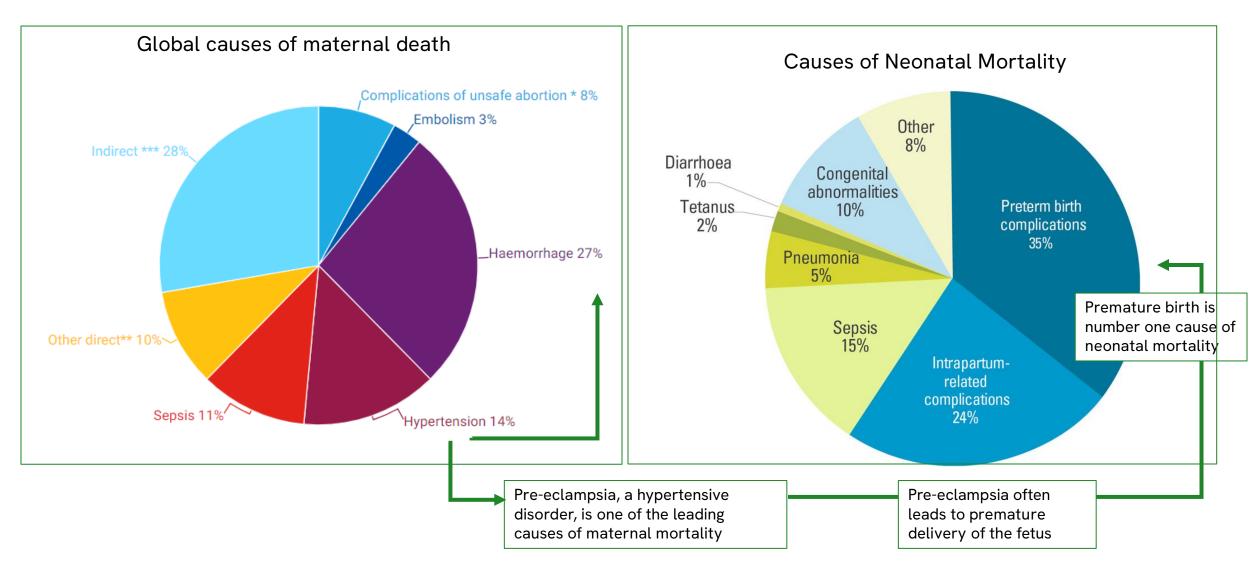

MAKING A BIG DIFFERENCE IN PREGNANCY CARE

PLACENTAL INSUFFICIENCIES,

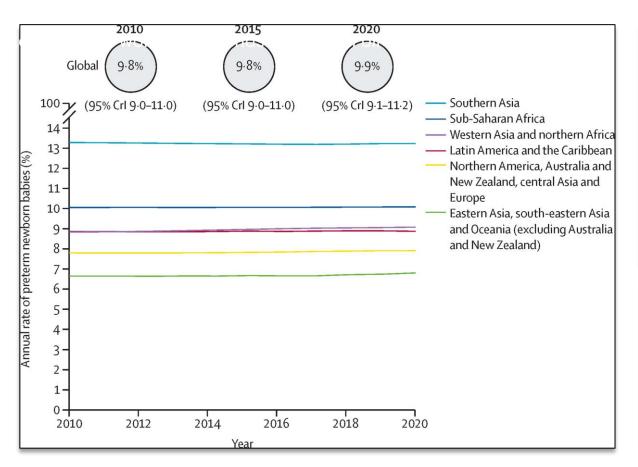
especially preeclampsia leading to ADVERSE OUTCOMES of pregnancy

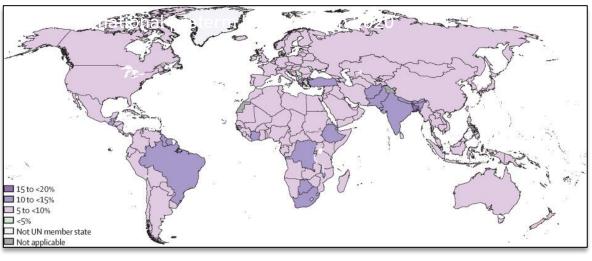
ARE
MUCH MORE COMMON
THAT ANEUPLOIDIES
COMBINED.

BOTH MOTHER AND BABY ARE AFFECTED both short and long-term

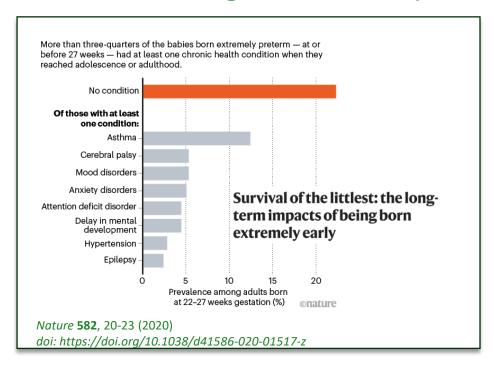

Placental insufficiency is present in virtually every major obstetrical syndrome"

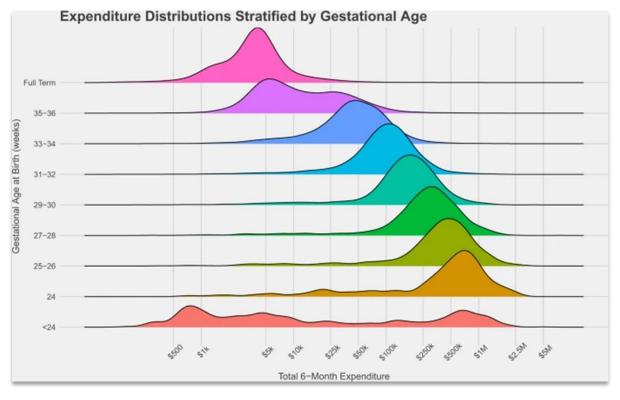
ROMERO, AM J OBSTET GYNECOL. 2011.


- Trisomy 21 = 1 in 600 (0.17%)
- Trisomy 18 = 1:1200 (0.08%)
- Trisomy 13 = 1:4200 (0.02%)
- Stillbirth = 1:250 (0.40%)
- Early PE = 1:200 (0.5%)
- Preterm PE = 1:66 (1.5%)
- Total PE = 1:40 (2.5%)
- Severe FGR = 1:33 (3.0%)


MATERNAL AND NEONATAL MORTALITY

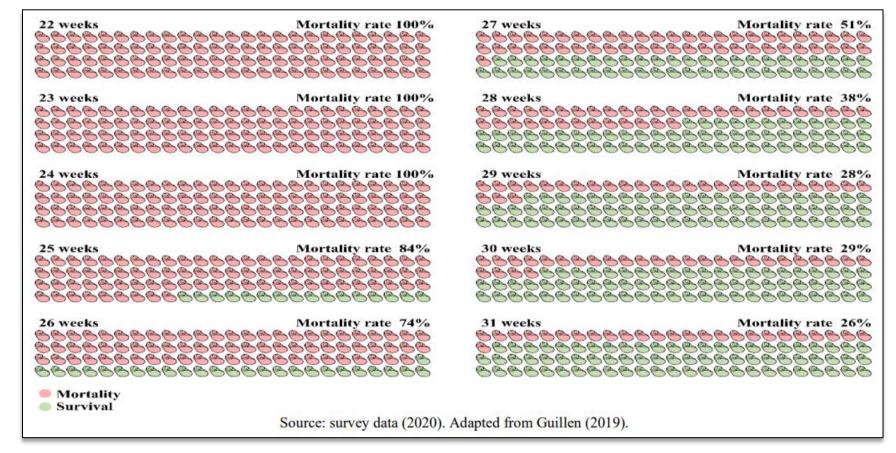
National, regional, and global estimates of preterm birth in 2020, with trends from 2010 (Lancet, 2023)




Prematurity numbers are not that different between countries.

...and have not been decreasing.

Effects of being survivor of premature: Morbidity and costs



Frequency of death and major, intermediate and minor morbidity. Data are n (%).

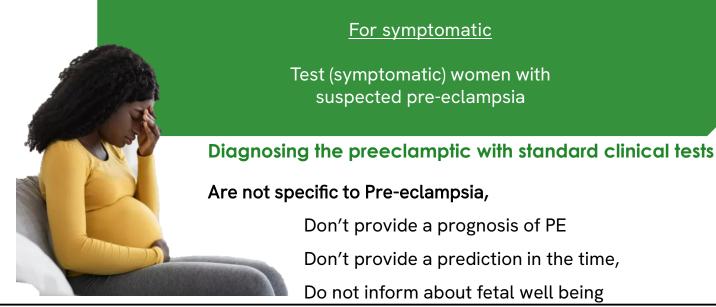
		Delivery gestational age (weeks)														
Outcome	All (n=8334)	23 (n=43)	24 (n=114)	25 (n=124)	26 (n=169)	27 (n=159)	28 (n=196)	29 (n=213)	30 (n=262)	31 (n=312)	32 (n=451)	33 (n=639)	34 (n=1058)	35 (n=1477)	36 (n=3117)	
Death	119 (1.4)	19 (44.2)	36 (31.6)	15 (12.1)	19 (11.2)	13 (8.2)	4 (2.0)	4 (1.9)	4 (1.5)	3 (1.0)	1 (0.2)	1 (0.2)	0 (0.0)	0 (0.0)	0 (0.0)	<.001
Major morbidity *	657 (7.9)	19 (44.2)	60 (52.6)	68 (54.8)	88 (52.1)	64 (40.3)	43 (21.9)	48 (22.5)	36 (13.7)	22 (7.1)	39 (8.7)	27 (4.2)	46 (4.4)	42 (2.8)	55 (1.8)	<.001
Minor morbidity†	3136 (37.6)	4 (9.3)	18 (15.8)	39 (31.5)	59 (34.9)	77 (48.4)	144 (73.5)	147 (69.0)	206 (78.6)	255 (81.7)	344 (76.3)	406 (63.5)	540 (51.0)	402 (27.2)	495 (15.9)	<.001
Survival without any of the above morbidities	4422 (53.1)	1 (2.3)	0 (0.0)	2 (1.6)	3 (1.8)	5 (3.1)	5 (2.6)	14 (6.6)	16 (6.1)	32 (10.3)	67 (14.9)	205 (32.1)	472 (44.6)	1033 (69.9)	2567 (82.4)	

Infographic for parents on the mortality results among premature infants

Without efficient prediction & prevention, prematurity is still the primary management and outcome of preterm preeclampsia

Traditional Pre-eclampsia screening for all – PE management for symptomatic

Pre-eclampsia screening NO SYMPTOMS


SYMPTOMS of pre-eclampsia may appear from wk 20 onwards

Identify women with high risk for pre-eclampsia

Screening based on maternal/obstetric risk factors

Recent studies: only ~40% are detected

60%

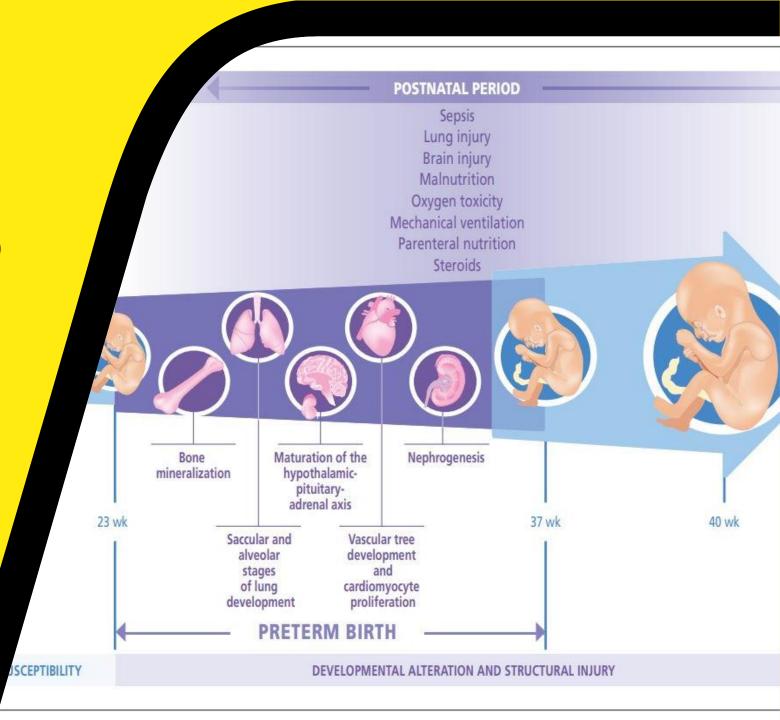
Of maternal deaths due to pre-eclampsia are preventable

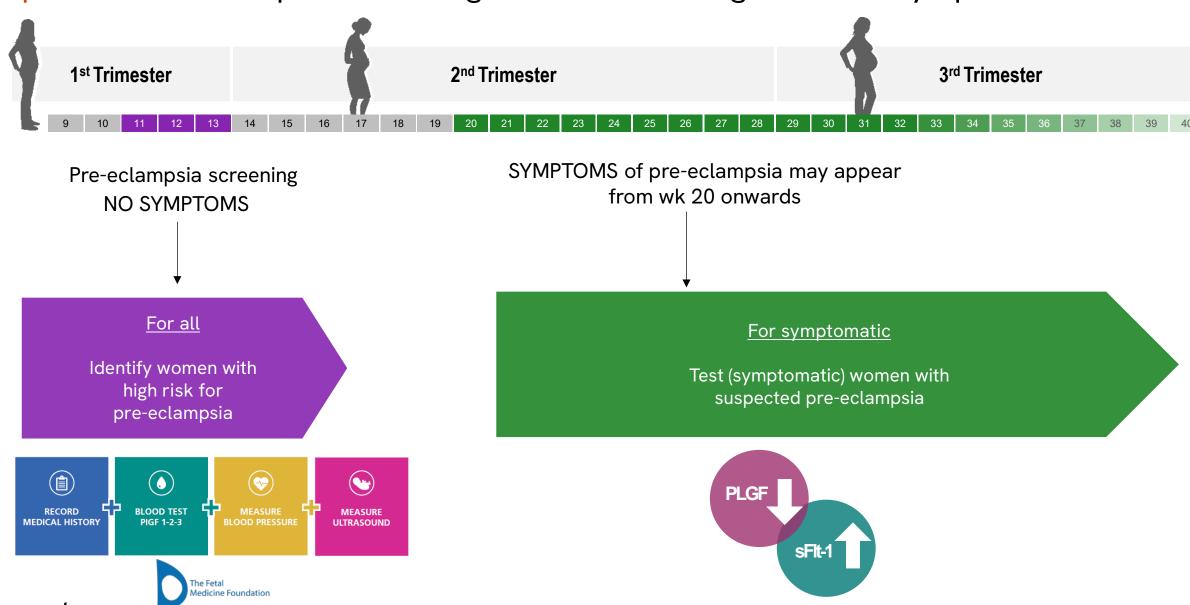
Majority of long-term effects of PREECLAMPSIA SURVIVORS

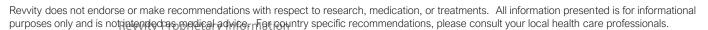
3-4x times the risk of developing high blood pressure

2x times to develop heart disease

higher risk to develop diabetes


...could be prevented

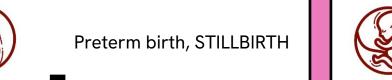

Majority of long-term effects of PREECLAMPSIA SURVIVORS


- Babies who survive can have
- breathing issues, intestinal (digestive) problems, and bleeding in their brains.
- Long-term problems may include developmental delay (not meeting the developmental milestones for his or her age), CP, ADHD, Neurological disorders and lower performance in school.

...could be prevented

Improved Pre-eclampsia screening for all – PE management for symptomatic

PREECLAMPSIA CARE IMPACT


UNTREATED

PIGF **DIAGNOSED & MANAGED** sFlt-1

Hypertension, coma, convulsions, kidney failure, liver failure, DEATH

Hypertension, kidney failure, liver failure, swollenness, headache

Preterm birth, risk of **DEATH**

PREECLAMPSIA SURVIVORS

Cardiovascular disease, organ damage, risk for stroke

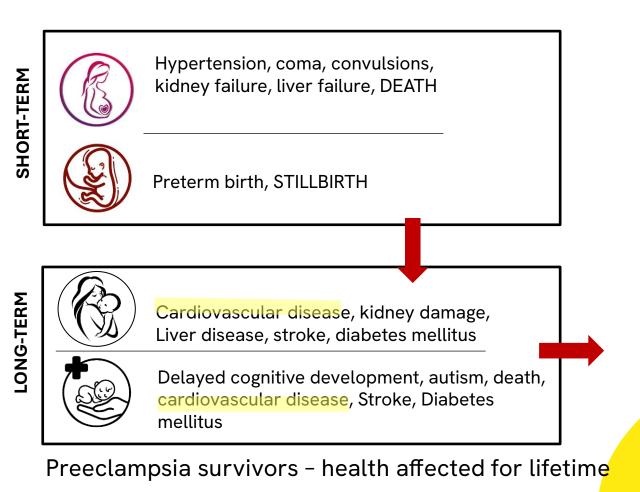
Delayed cognitive development, autism, death, chronic diseases

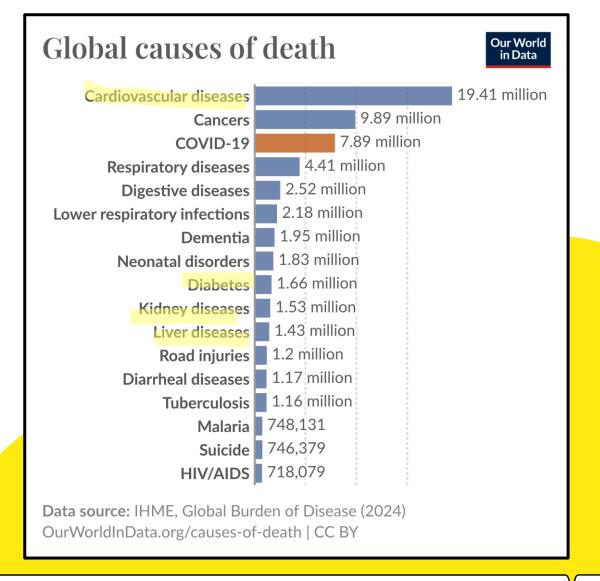
NUMBER 1 GOAL

PlGF

SCREENED & PREVENTED

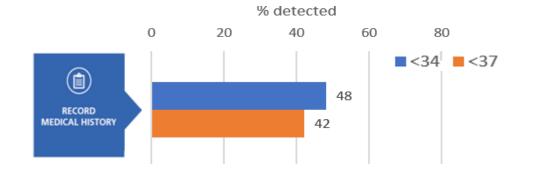
Normal pregnancy, Healthy mother


More mature in delivery



LONG-TERM

Complications of preeclampsia (hypertensive disorder of pregnancy)


Traditional screening method is simple but poor

ACOG/NICE guidelines pre-eclampsia screening is based on maternal characteristcs and medical history

Moderate-risk factors
Nulliparity
Age >40 years
Inter-pregnancy interval >10 years
BMI at first visit >35 kg/m2
Family history of PE

High-risk factors
History of hypertensive disease in previous pregnancy
Chronic kidney disease
Autoimmune disease
Diabetes mellitus
Chronic hypertension
Multi fetal pregnancy

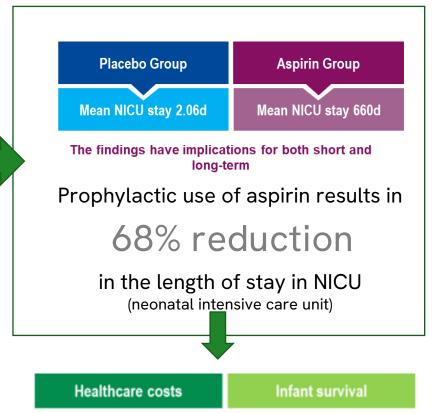
Screening based on maternal/obstetric risk factors

Recent studies: only ~40% are detected

The first step to better detection combined screening with PLGF

0 20 60 80 <34 <37 ACOG/NICE guidelines **>>>** pre-eclampsia screening is based RECORD on maternal characteristcs and 42 MEDICAL HISTORY medical history (* 65 RECORD 73 **BLOOD TEST** 68 MEDICAL HISTORY PIGF 1-2-3 <34 <37 90 **COMBINED SCREENING MEASURE BLOOD TEST ULTRASOUND** MEDICAL HISTORY PIGF 1-2-3

% detected

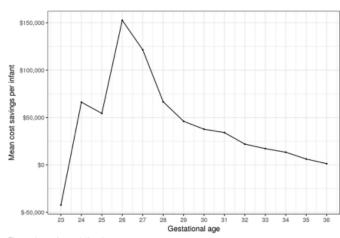

EFFICACY OF SCREENING AND ASPIRIN

in reducing preterm pre-eclampsia

Combined pre-eclampsia screening rate (%) 80 Weeks 11-13+6 89% 82% 70 60 Prevention 50 40 **BLOOD TEST MEASURE MEDICAL HISTORY** PIGF 1-2-3 ULTRASOUND 30 20 18% Identify women at high risk of pre-eclampsia <32w <34w Screening enables Aspirin in high risk women timely intervention for reducing the incidence 150mg Aspirin of pre-eclampsia

EFFECT OF PREVENTION

on length of stay in the NICU



1. Rolnik DL et al. ASPRE trial; Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N Engl J Med. 2017;377(7):613-622. 2. Wright D et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: influence of compliance on beneficial effect of aspirin in prevention of preterm preeclampsia. Am J Obstet Gynecol. 2017; 217:685.e1-5. 3. Poon LC et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: effect of aspirin in prevention of preterm preeclampsia in subgroups of women according to their characteristics and medical and obstetrical history. Am J Obstet Gynecol 2017;217:585.e1-5. 4. Wright et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: effect of aspirin on length of stay in the neonatal intensive care unit. Am J Obstet Gynecol. 2018; 218:612.e1-6

EFFECT OF PRE-ECLAMPSIA

on <u>healthcare costs</u> and <u>infant survival</u>

The earlier a baby is born, the higher the cost of care.

The costs are by gestational age

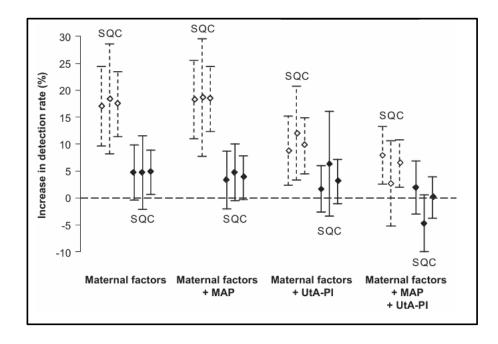
Stevens. Short-term costs of preeclampsia in the US. Am J Obstet Gynecol 2017.

Table 1. Short-term costs of pre-eclampsia to the United States health care system. [11]

Estimated unit and total health care cost for pre-eclampsia patients in the United States, by gestational age at birth (2012) using California Office of Statewide Health Planning and Development and commercial claims data

Costs	<28 wks (3604)	28-33 wks (23,624)	34-36 wks (41,856)	37 wks or longer (87, 596)	All (156, 680)
Maternal cost per birth	\$29,131	\$24,063	\$19,692	\$17,021	\$19,075
Infant cost per birth	\$282,570	\$59,803	\$11,112	\$6013	\$21,847
Combined cost per birth	\$311,701	\$83,866	\$30,804	\$23,035	\$40,922
Total health care cost	\$1.2 billion	\$2.0 billion	\$1.3 billion	\$2.0 billion	\$6.4 billion
Total cost because of infant cost, %	91%	71%	36%	26%	

The earlier a baby is born, the higher the risk of death or serious disability.


- In 2019 preterm birth and low birth weight accounted for about 17% of infant deaths in US.
- Babies who survive can have breathing issues, intestinal (digestive) problems, and bleeding in their brains.
- Long-term problems may include **developmental delay** (not meeting the developmental milestones for his or her age), **CP, ADHD, Neurological disorders and lower performance in school**.

Birth	Death <5 y	Cerebral palsy	Impaired work capacity
23-27w	80%	9.1%	10.6%
28-30w	40%	6.0%	8.2%
31-33w	11%	1.9%	4.2%
34-36w	2.3%	0.3%	2.4%
≥37w	0.6%	0.1%	1.7%

867,692 live births Norway 1967-1983 Moster et al. NEJM 2008;359:262

Why not PAPP-A? Performance review for prediction of pre-term PE (<37wks GA).

Increase in DR observed for a fixed 10% SPR

Screening Model	Base case	Base case plus PAPP-A	Base case plus PlGF
History	45.4%	4.7%	17.4%
History plus MAP	51.8%	3.8%	18.4%
History plus UTPI	63.8%	3.0%	9.7%
History plus UTPI & MAP	75.0%	0.0%	6.4%

Based on SPREE & Screening Quality Study. Both data sets reviewed individually and combined (25226 screens).

In total, 194 cases of pre-term PE.

Contents lists available at ScienceDirect

Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health

journal homepage: www.elsevier.com/locate/preghy

Review article

The diagnostic accuracy of the NICE risk–stratification algorithm in predicting pre-eclampsia: A systematic review with *meta*-analysis

James S Morris a,*, Siraj Abualnaja a, Miriam Baumgarten b

- This systematic review of the NICE risk-stratification algorithm. Incorporating data from 17 eligible studies and 258,278 pregnancies.
- The NICE risk-stratification algorithm for preeclampsia performs remarkably poorly as a tool by which to allocate Aspirin prophylaxis.
 - 56.7% of preeclampsia cases missing
 - Costing £265000/year unnecessary prescriptions of Aspirin
- Should be replaced with an alternative tools like FMF tool.

a University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital NHS Foundation Trust, Hills Road, Cambridge CB2 OQQ, United Kingdom

b Department of Obstetrics and Gynaecology, Addenbrooke's Hospital NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom

Ultrasound Obstet Gynecol 2018
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/uog.19039

Comparison of diagnostic accuracy of early screening for pre-eclampsia by NICE guidelines and a method combining maternal factors and biomarkers: results of SPREE

M. Y. TAN^{1,2}, D. WRIGHT³, A. SYNGELAKI¹, R. AKOLEKAR^{1,4}, S. CICERO⁵, D. JANGA⁶, M. SINGH⁷, E. GRECO⁸, A. WRIGHT³, K. MACLAGAN⁹, L. C. POON^{1,10#} and K. H. NICOLAIDES^{1,2#}

Efficacy and Mechanism Evaluation

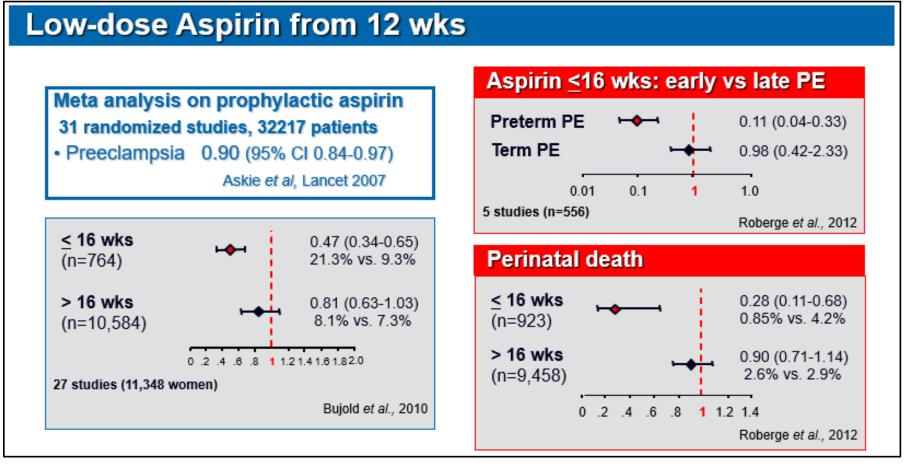
Volume 7 • Issue 8 • November 2020 ISSN 2050-4365

Mini-combined test compared with NICE guidelines for early risk-assessment for pre-eclampsia: the SPREE diagnostic accuracy study

Liona C Poon, David Wright, Steve Thornton, Ranjit Akolekar, Peter Brocklehurst and Kypros H Nicolaides

Showed <u>low compliance to treatment</u> if no proper screening and counselling is performed

Screen +ve rate determined by NICE 10,2%

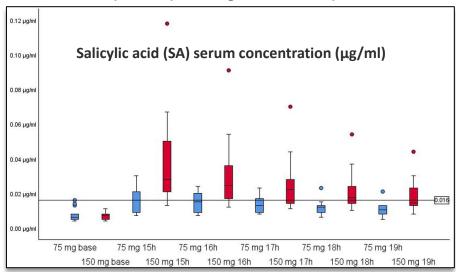

- Compliance to aspirin (Do high risk women take their tablets?)
 - 23% with NHS method (history only)
 - 85% with FMF method (Combined)

It is important that the women know their risk and it is based on specific assessment with measurement results.

ASPIRIN - potential candidate for prevention

- Timing?

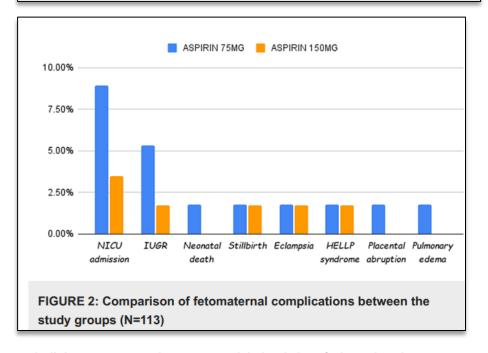
Significant difference in impact on pre-term PE and perinatal death, dependent on when Aspirin prophylaxis was started.



ASPIRIN – potential candidate for prevention - The dose?

A randomised crossover design study comparing the pharmacokinetics and pharmacodynamics of two single Doses of ORal Aspirin (75 mg v 150mg) in pregnant women at risk of pre-eclampsia (DORA): implications on assessing aspirin response and patient adherence to therapy.

Raya Vinogradov*^{†§c}, Oisín N. Kavanagh*^{#0}, Jeremy Palmer[#], Paul Murphy[§], Emma Curtis[§], Farhad Kamali ^{§#} & Stephen Robson^{†§}.

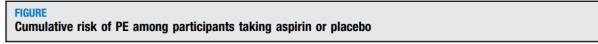

The doses and the effect to thromboxane B2 levels from blood samples, in different timepoints post ingestion of aspirin

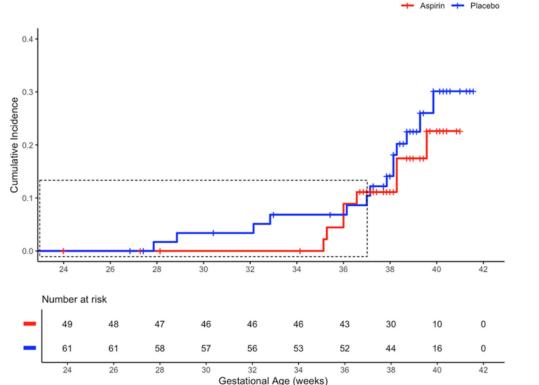
- 150 mg dose SA inhibits thromboxane more efficiently than the 75 mg dose.
- With a dose of 150 mg SA, plasma SA concentrations are consistently above baseline levels up to 12 hours after oral dosing
- Study was also able to demonstrate that thromboxane levels were fully recovered after a wash-out period of one week.

A Randomized Controlled Study Comparing the Efficacy of 75mg Versus 150mg Aspirin for the Prevention of Preeclampsia in High-Risk Pregnant Women

Nishi Sinha 1 , Shruti Singh 1 , Mukta Agarwal 2 , Pramod K. Manjhi 1 , Rajesh Kumar 1 , Sunil Kumar Singh 1 , Aakanksha Priya 1

 With women who are at high risk of developing preeclampsia, Aspirin 150 mg once a day at bedtime is more effective than Aspirin 75 mg in preventing preeclampsia with similar adverse outcomes (NICU admission, IUGR, neonatal death, still birth, eclampsia, HELLP syndrome, placental abruption and pulmonary edema).




Aspirin delays preeclampsia in women with chronic hypertension

Emmanuel Bujold ¹, Daniel L Rolnik ², Liona Poon ³, Argyro Syngelaki ⁴, David Wright ⁵, Kypros H Nicolaides ⁴

Affiliations + expand

PMID: 40287082 DOI: 10.1016/j.ajog.2025.04.046

Secondary analysis of the ASPRE data to better estimate the role of aspirin in women with chronic hypertension.

Aspirin use is associated with a shift in the cumulative risk of preterm PE to later gestational age (P=.051).

Findings suggest that, in women with chronic hypertension, aspirin shifts the distribution of delivery with PE to a later gestational age, in a similar fashion to that in high-risk women without chronic hypertension.

Women with chronic hypertension often have PE with delivery very early in gestation. Aspirin delays PE by several weeks and certainly reduces perinatal morbidity and neonatal hospitalizations.

Aspirin does not specifically reduce the number of preterm PE.

Consequently, women with chronic hypertension benefit from aspirin during pregnancy by reducing the earliest cases of PE.

Aspirin in prevention of preeclampsia: Universal aspirin – Side effects

Aspirin use during pregnancy and the risk of bleeding complications: a Swedish population-based cohort study. Hastie, R. et al. (2021). *American journal of obstetrics and gynecology*, 224(1), 95.e1–95.e12.

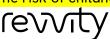
Complication	Aspirin (n=4,088)	No aspirin (n=309,536)	Odds ratio (95%CI)
Intrapartum hemorrhage	117 (2.9%)	4.695 (1.5%)	1.63 (1.30,2.05)
Postpartum hemorrhage	411 (10.2%)	24,036 (7.8%)	1.23 (1.08,1.39)
Neonatal intracranial hemorrhage	3 (0.07%)	17 (0.01%)	9.66 (1.88, 49.48)

Problems: Aspirin use defined as any tablet taken for any reason

Systematic <u>review and meta-analysis</u> of adverse events of low-dose aspirin and clopidogrel in randomized controlled trials.

McQuaid, K. R., & Laine, L. (2006). The American journal of medicine, 119(8), 624-638

Complication (n=75,000 non-pregnant)	Aspirin	No aspirin	RR (95%CI)
Major bleeding	26,673	26,712	1.71 (1.41, 2.08)
Major gastrointestinal bleeding	28,686	28,719	2.07 (1.61, 2.66)
Intracranial bleeding	27,671	27,712	1.65 (1.12, 2.44)


Absolute annual increase: Major bleeding 0.13%, Gastrointestinal bleeding 0.12%, Intracranial bleeding 0.03%, non-pregnant)

Utero Exposure to Aspirin and Risk of Asthma in Childhood.

Chu, S. et al (2016). Epidemiology (Cambridge, Mass.), 27(5), 726-731.

Complication	Aspirin	No aspirin	aOR
	(n=11,215)	(n=8,677)	(95%CI)
Childhood asthma	552 (5%)	352 (4%)	1.3 (1.1, 1.6)

The risk of childhood asthma was increased by 30%

In utero drug exposure and hearing impairment in 2-year-old children A case-control study using the EFEMERIS database.

Foch, C., et al (2018). International journal of pediatric otorhinolaryngology, 113, 192–197.

Complication	Abnormal hearing (n=1,245)	Normal hearing (n=28,046)	aOR (95%CI)
In-utero ASA exposure	28 (2.2%)	396 (1.4%)	1.61 (1.09, 2.37)

The risk of hearing disorders was increased by 60%

Implementation of First-Trimester Screening and Prevention of Preeclampsia: A Stepped Wedge Cluster-Randomized Trial in Asia. Nguyen-Hoang et al; FORECAST Collaborators Circulation. 2024 Oct 15;150(16):1223-1235.

Complication	High risk with aspirin	High risk without aspirin
Postpartum hemorrhage	2.05%	1.44%
Fetal structural defects	0.72%	0.64%
Fetal chromosomal defects	0.1%	0
At least one serious adverse event	3.15%	2.08%

The risk of PE was screened

Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia.

Rolnik, D. L., et al (2017) The New England journal of medicine, 377(7), 613–622. ASPRE study

Complication	Aspirin (n=798)	Placebo (n=822)	P-value
Vaginal bleeding	29 (3.6%)	21 (2.6%)	0.27
Nasal bleeding	16 (2.0%)	27 (3.3%)	0.15
Abruption without PE	5 (0.62%)	9 (1.09%)	0.31
Neonatal IVH ≥ G2	2 (0.25%)	1 (0.12%)	0.55

The risk of PE was screened

DOI: 10.1111/aogs.70026

ORIGINAL RESEARCH

Placental growth factor before 11 weeks for screening of preterm preeclampsia: The PreMoM study

Rocío López Mármol^{1,2} | José Alejandro Ávila Cabreja³ | Teresa de Haro Romero⁴ Catalina de Paco Matallana⁵ | Olga Ocón Hernández^{2,6} | Otilia González-Vanegas^{2,6} Pilar Carretero Lucena^{2,6} | María Paz Carrillo¹ | Juan Luis Delgado⁵ | Valeria Rolle⁷ Uzay Gormus⁸ | Liza Oraha⁸ | María M. Gil^{9,10} | Francisca S. Molina^{2,6}

8-10+6 weeks vs 11-13+6 weeks screening performance

- The best discrimination (AUROC: 0.863; 95% CI, 0.754–0.971) and calibration were achieved by the model using PIGF between 11 and 13+6 weeks.
- PIGF measured before 11 weeks did not improve preterm PE screening performance

¹Department of Obstetrics and Gynecology, Hospital Universitario Virgen de las Nieves, Granada, Spain

²Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain

³Fundación Pública Andaluza para la Investigación Biosanitaria Andalucía Oriental, Granada, Spain

⁴Clinical Laboratory Management Unit, Hospital Universitario Clínico San Cecilio, Granada, Spain

⁵Department of Obstetrics and Gynecology, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain

⁶Department of Obstetrics and Gynecology, Hospital Universitario San Cecilio, Granada, Spain

⁷Biostatistics and Clinical Research Unit, Hospital Universitario de Torrejón, Madrid, Spain

⁸Department of Clinical Laboratory, Revvity Omics Sweden, Sollentuna, Sweden

⁹Department of Obstetrics and Gynecology, Hospital Universitario de Torrejón, Madrid, Spain

¹⁰School of Medicine, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain

Preterm preeclampsia screening and prevention: a comprehensive approach to implementation in a real-world setting

2025 Jan 15;25(1):32. doi: 10.1186/s12884-025-07154-6.

The study confirms the feasibility of integrating comprehensive preeclampsia screening into real-world clinical practices

- The integration of preeclampsia screening had a minimal effect on the time required for an euploidy screening, with results obtained within a rapid turnaround time.
- While the <u>FMF algorithm provides better performance</u> when all parameters (UtAPI, PIGF, and PAPP-A) are included,
- FMF algorithm can deliver a personalized risk score even if one or both placental markers are missing. Therefore, the protocol is applicable to lower-resource settings where not all parameters may be available.

Table 2 Time used for each component of the and turnaround time of the screening test	e screening test
Time Interval	Median (p5, p95
History Collection (min)	2.0 (1.0, 4.25)
Blood Pressure Collection (min)	3.0 (2.0, 4.0)
Nuchal Translucency Scan (min)	25 (20,40)
Uterine artery Doppler measurement (min)	2.0 (1.0,2.5)
Time between blood sample collection and blood sample receipt (days)	1(1,2)
Time between sample receipt and results report (days)	2(1,3)

Is it Time for Precision Screening in Preeclampsia?

JACC Adv. 2025 Mar;4(3):101585. doi: 10.1016/j.jacadv.2025.101585.

Improved first-trimester preeclampsia screening would

- 1. reduce costs for patients and hospitals by
 - decreasing unnecessary hospitalizations and
 - identifying early-onset preeclampsia patients that need close monitoring during pregnancy.
- 2. It would also alleviate patient anxiety and provide additional information to help clinicians to risk-stratify patients.

JACC: ADVANCES
© 2025 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN
COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER
THE CC BY-NC-ND LICENSE (http://creativecommons.org/licensex/by-nc-nd/4.0/).

VIEWPOINT

Is it Time for Precision Screening

Ain Shajihan, MD, ^a Michael C. Honigberg, MD, MPP, ^b Antonio Saad, MD, ^c Nandita S. Scott, MD, ^b Tiffany M. Powell-Wiley, MD, MPH, ^{d, c} Garima Sharma, MD^a

in Preeclampsia?

Utilizing the proposed models, providers can capture a larger portion of high-risk patients in order to allocate aspirin appropriately, leading to improved morbidity, maternal outcomes, and future cardiovascular health.

Effective screening reduces health care costs and improves quality of life

Pre-eclampsia screening

How to enhance pre-eclampsia management?

2T/3T PRE-ECLAMPSIA SHORT-TERM PREDICTION & AID IN DIAGNOSIS

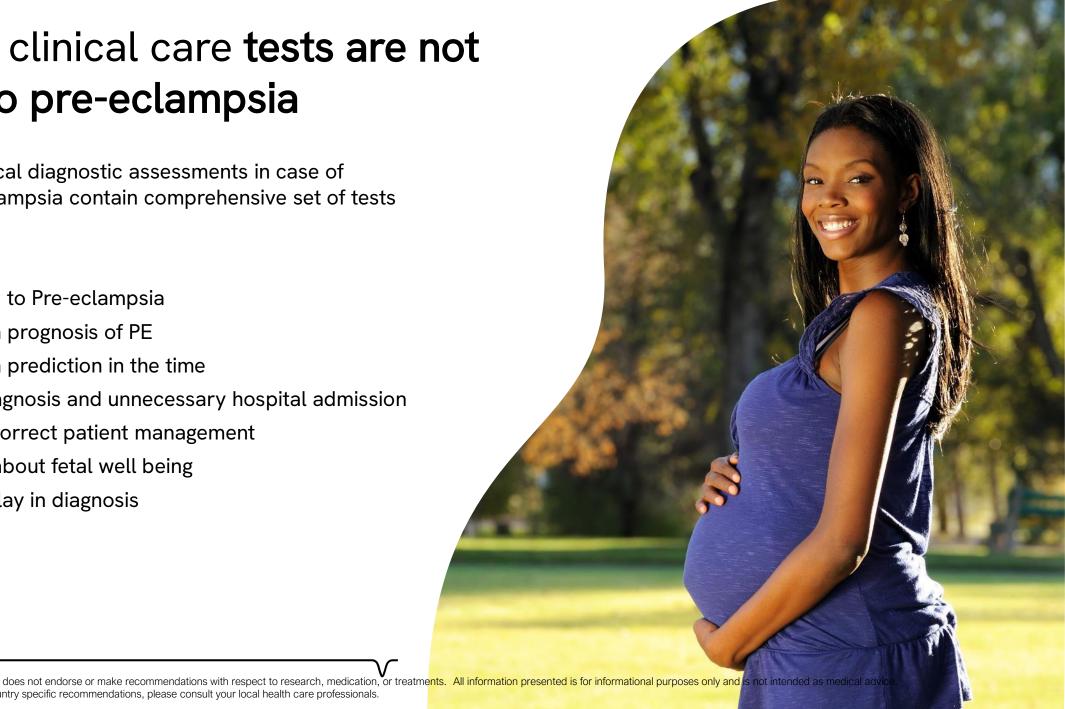
Pre-eclampsia related sign or symptoms are not specific for pre-eclampsia

Sign and symptoms of pre-eclampsia are many and varied

Women with signs or symptoms of pre-eclampsia do not always develop preeclampsia 25%

of women with gestational hypertension will progress to pre-eclampsia

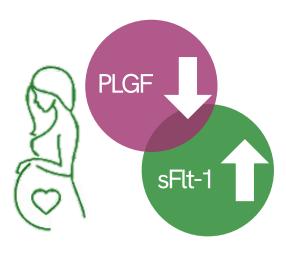
Standard clinical care tests are not specific to pre-eclampsia


The standard clinical diagnostic assessments in case of suspected pre-eclampsia contain comprehensive set of tests

BUT, tests:

- Are not specific to Pre-eclampsia
- Don't provide a prognosis of PE
- Don't provide a prediction in the time
- Lead to overdiagnosis and unnecessary hospital admission

For country specific recommendations, please consult your local health care professionals.


- May lead to incorrect patient management
- Do not inform about fetal well being
- May lead to delay in diagnosis

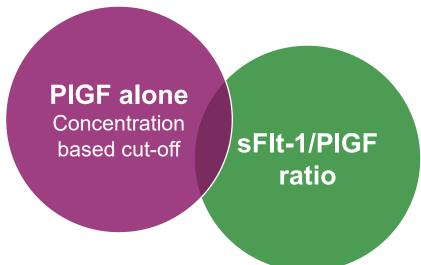
For symptomatic women PLGF based testing improves pre-eclampsia management

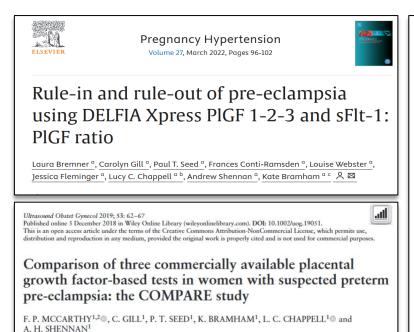
During 2T and 3T PIGF and sFlt-1 are both predictive and diagnostic for pre-eclampsia

Biomarker levels also correlate with severity of disease

PLGF BASED TESTING in addition to standard clinical assessment ENHANCE CLINICAL CARE

Faster and more accurate diagnosis of pre-eclampsia


Improved disease management, including timing of delivery



NICE Diagnostic guidance: DG23. PIGF-based testing to help diagnose suspected pre-eclampsia, 2016.

For symptomatic women **PLGF** based testing – two alternatives

Both options are equally recommended for clinical use

PLGF-based testing to help diagnose suspected preterm pre-eclampsia


Diagnostics guidance Published: 27 July 2022 www.nice.org.uk/guidance/dg49

PlGF, as single marker, has a comparable performance to sFlt-1/PlGF ratio Based on the studies
there is no need
for two analytes,
PIGF alone
is sufficient

PLGF alone,
with concentration
based cut-offs,
could provide a
simpler solution

PLGF alone, use of one kit, could offer more affordable alternative

Preeclampsia SCREENING/DIAGNOSING growth 2025 – supporting signals

Supporting data

Increasing amount of data showing the efficacy of screening and added value of PIGF and sFIt-1:

- FORECAST
- PREVAL
- PRECISE
- PRAECIS
- (RANSPRE, IMPACT

Supporting guidelines

International guidelines FIGO, ISSHP, ISUOG,

Local guidelines (screening): Germany, Austria, Switzerland, Denmark, Estonia, Canada, Brazil...Updating: Spain, Sweden

Local guidelines (management): Lithuania, UK, Finland, Germany, Austria, Switzerland, Spain, Canada, Brazil

Increasing implementation

National implementation studies in:

- Denmark
- France
- UK

New countries:

• USA

GRANTs:

- UNITAID
- Gates

Global strategic priorities

Organization with supporting strategies to accelerate reduction of maternal, newborn and child health

Hypertensive disorders of pregnancy being acknowledge as one of the leading causes of maternal mortality andmorbidity

Increasing interest for preeclampsia screening

	2017	2018	2019	2020	2021	2022	2023	2024	2025
Screening	ASPRE		FIGO		ISSHP		ISUOG	Australia New Zealand	
			Poland				Brazil	New Zealallu	
Both		Czech	Romania Bulgaria	Italy Spain Thailand	Estonia	Japan Canada		Germany Austria Swizerland	
Management	UK (NICE) Brazil	Malaysia	South Africa		Finland	Sri Lanka	Australia	USA	
		ISUOG ESC			FIGO ISSHP		New Zealand Lithuania Scotland		Denmark

Increasing interest for preeclampsia screening

GRANTs and open calls:

Call for proposals: Improving access to lifesaving tools for prevention, diagnosis, and management of pre-eclampsia and maternal anemia

Date posted 21 November 2024 Unitaid SAVE LIVES FASTER

Call status
CLOSED

Organizational strategies to accelerate reduction of maternal, newborn and child health

Hypertensive disorders of pregnancy being acknowledge as one of the leading causes of maternal mortality and morbidity (16%)

Reducing the Burden of Preeclampsia

Mar 8, 2025

Many pregnancy-related complications going undetected and untreated – WHO

Haemorrhage – severe heavy bleeding – and
hypertensive disorders like preeclampsia are the
leading causes of maternal deaths globally, according to
vity Proprietary Information

to

American Journal of Obstetrics & Gynecology MFM

Volume 5, Issue 2, February 2023, 100815

The Implementation of Preeclampsia Screening and Prevention (IMPRESS) Study

J.M. Johnson MD, FRCSC $^{lpha} \stackrel{ ext{N}}{\sim} M$, Jennifer D. Walsh MD, FRCSC lpha , Nanette B. Okun MD, FRCSC f , Amy Metcalfe PhD a, Melanie L. Pastuck BN a, Connor M. Maxey BSc a, Nancy Soliman MD, FRCSC a, Houman Mahallati MD, FRCPC b, Verena H. Kuret MD, FRCSC a,

Shannon J. Dwinnell MD, FRCSC a, Rati Chada MD, FRCSC a, Candace P. O'Quinn MD, FRCSC a

Jaime Schacher MD, FRCSC a, David A. Somerset DM, FRCSC A, Kimiko Paterson MD, FRCPC b

Ian Kard

N.

C.

Pre-eclampsia screening in Den validation study

Pre-eclampsia streening in Den validation study

added value of PIGF and cost savings.

I. RIISHEDE^{1,2}, L. RODE^{2,3}, L. SPERLING^{4,5}, M. O P. S<u>ANDAGER^{7,8}, H. SKOV^{7,8}, S. R. WAGNER⁹, P. N</u>

RESEARCH

On-going:

Preterm preeclamp: • RANSPRE (Fr) and prevention: a cc • IMPACT (Swe) to implementation ii • STARSHIP (UK)

Stefania Ronzoni Tianhua Huang²

Ultrasound Obstet Gynecol 20
Published online in Wiley Onlin

• PEPPI (Fin)

Validation of • FNIH (US) are for first-trimester prediction of placerampsia using cohort from PREVAL study

M. M. GIL^{1,2}, D. CUENCA-GÓMEZ^{1,2}, V. ROLLE^{1,3}, M. PERTEGAL^{4,5,6}, C. DÍAZ⁷, R. REVELLO⁸, B. ADIEGO⁹, M. MENDOZA¹⁰, F. S. MOLINA^{11,12}, B. SANTACRUZ^{1,2}. Z. ANSBACHER-FELDMAN¹³, H. MEIRI¹⁴, R. MARTIN-ALONSO^{1,2}, Y. LOUZOUN¹³ and C. DE PACO MATALLANA4,5,6

Contents lists available at ScienceDirect

Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health

journal homepage: www.elsevier.com/locate/preght

Clinical implementation of pre-eclampsia screening in the first trimester

of pregnancy

Adalgisa Cordisco Giulia Vannucci b.

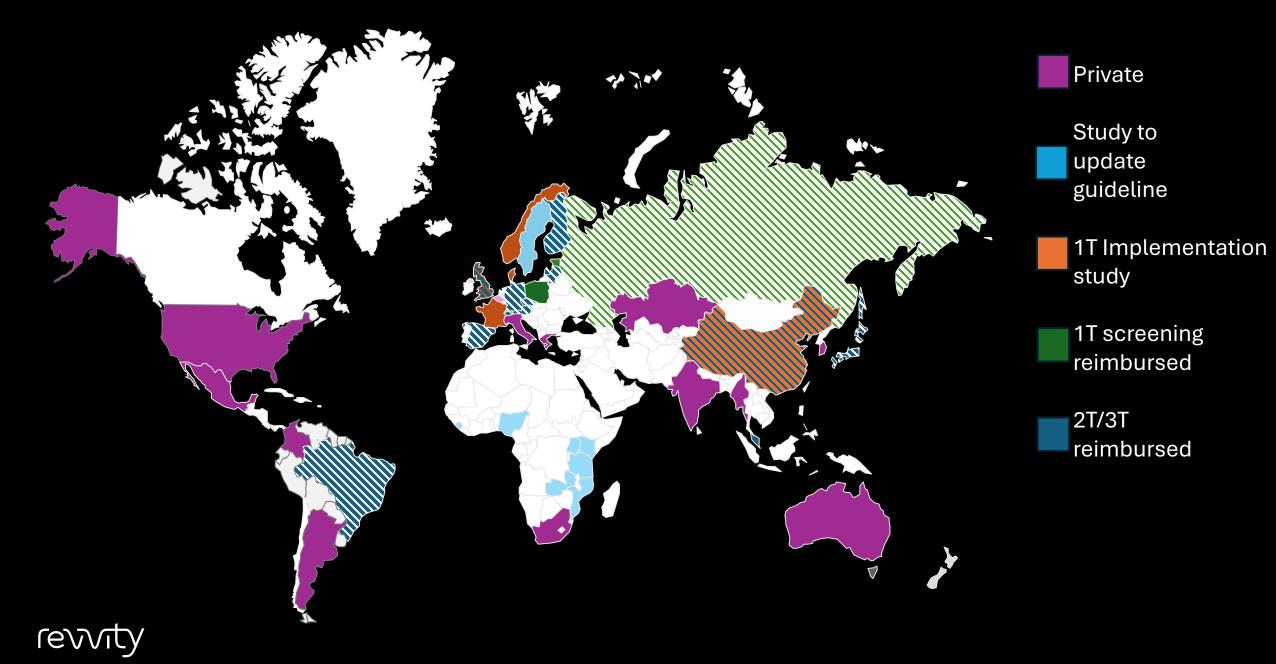
ELSEVIER

a Division of Prenatal Diagnosis b Fetal Medicine Unit, Departm DOI: 10.1111/1471-0528.16361

ia: a clinical

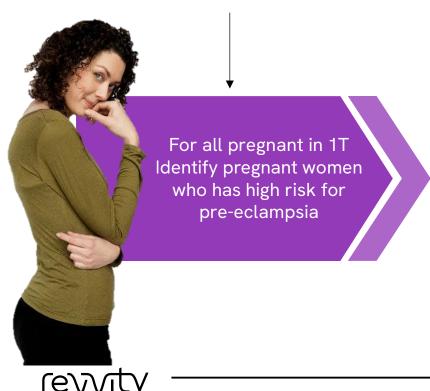
ster Screening and Stepped Wedge Cluster-

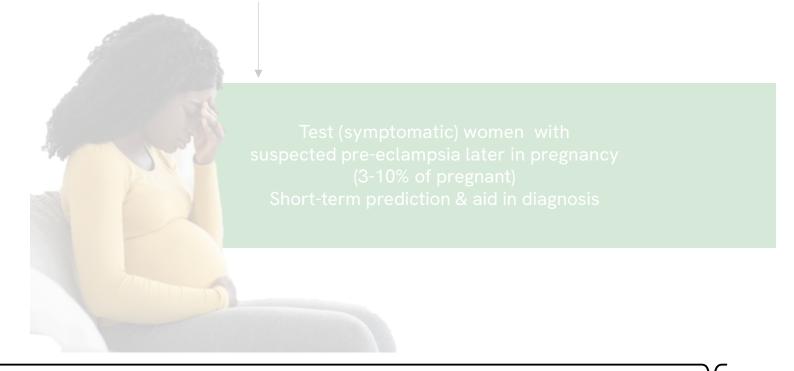
PhD*, Angela S.T. Tai, MSc, Duy-Anh תה, PnD 📵 , Arihiro Shiozaki, MD, PhD,


, רחס, Yali Hu, MD, Bin Li, MD 🔟 , Aditya Kusuma, MD, PhD 🔟 ,

nengbulan Yapan, MD, Arundhati Gosavi, MD, PhD, Mayumi Kaneko, MD 厄 , Suchaya Luewan, MD (D), Tung-Yao Chang, MD (D), Noppadol Chaiyasit, MD (D), Tongta Nanthakomon, MD, Huishu Liu, MD 🕞 , Steven W. Shaw, MD, PhD, Wing Cheong Leung, MD (D), Zaleha Abdullah Mahdy, MD, PhD (D), Angela Aguilar, MD, MSc, Hillary H.Y. Leung, MBBS, BSc, Nikki M.W. Lee, MD 🕞 , So Ling Lau, MD 🕞 , Isabella Y.M. Wah, MD (D), Xiaohong Lu, PhD, Daljit S. Sahota, PhD (D), Marc K.C. Chong, PhD (D), and Liona

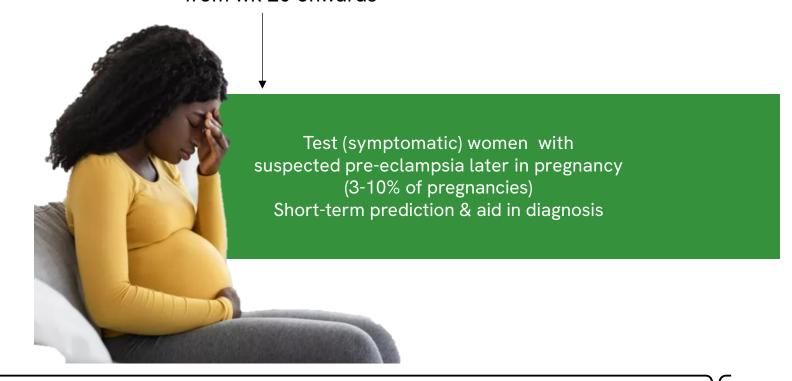

C. Poon, MD (D) FORECAST Collaborators

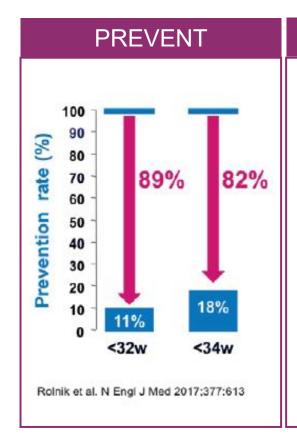

PE testing maturity level - Readiness to adopt


Pre-eclampsia screening for all – PE management for symptomatic

Pre-eclampsia screening

Symptoms of pre-eclampsia may appear from wk 20 onwards


Pre-eclampsia screening for all – PE management for symptomatic


Pre-eclampsia screening

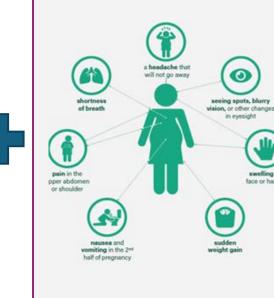
For all pregnant in 1T Identify pregnant women who has high risk for pre-eclampsia

Symptoms of pre-eclampsia may appear from wk 20 onwards

Preeclampsia affects both mother and the child also later in life

BETTER OUTCOMES

Birth	Death <5 y	Cerebral palsy	Impaired work capacity
23-27w	80%	9.1%	10.6%
28-30w	40%	6.0%	8.2%
31-33w	11%	1.9%	4.2%
34-36w	2.3%	0.3%	2.4%
≥37w	0.6%	0.1%	1.7%
	2: Heart D		
		2x	

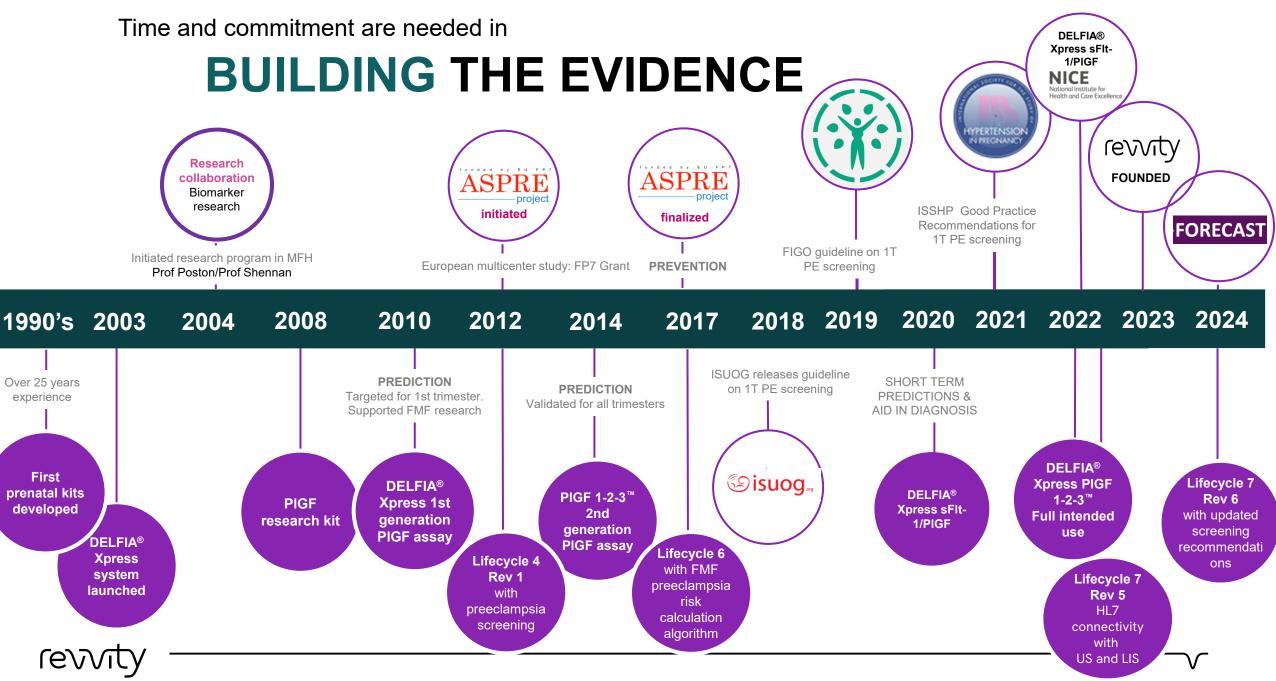

REDUCED COSTS

Gestational Age (completed weeks)	N	Mean (US \$)	
24	486	222,563	
25	678	233,538	
26	756	207,637	
27	900	178,080	
28	1,091	146,121	
29	1,226	115,801	
30	1,556	92,882	
31	1,995	68,446	
32	2,799	46,117	
33	4,719	30,145	
34	14,541	10,535	
35	25,077	6,007	
36	44,922	3,444	
37	92,421	2,027	

Prophylactic use of aspirin results in

68% reduction

in the length of stay in NICU

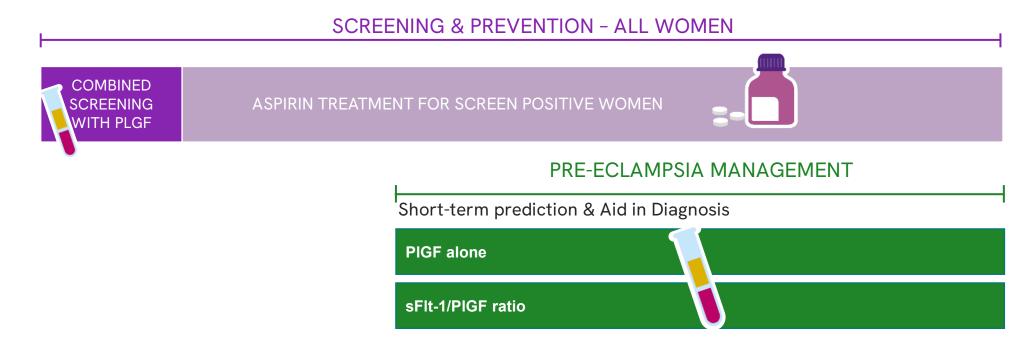


RAPID & ACCURATE

TRIAGE

MANAGE BETTER

THIS CONDITION WOULD BRING SUBSTANTIAL IMPROVEMENTS TO MATERNAL AND FETAL HEALTH AND COSTS



[&]quot;Products may not be licensed in accordance with the laws in all countries such as the United States and Canada. Please check with your local representative for availability."

Pre-eclampsia

WEEKS OF GESTATION

Customer-Driven Innovation and Continuous Improvement

Demographic entry to LifeCycle

 Worklist transferred automatically from LifeCycle to DELFIA Xpress

 When test is ready, results are transferred from DELFIA Xpress to LifeCycle

- Comprehensive Multiple screening strategies are supported
- Effective data management with LifeCycle
 Simplifies the data collection and workflow processes
- Easy to set up, learn and use Simple and flexible user interface with performance monitoring dashboard

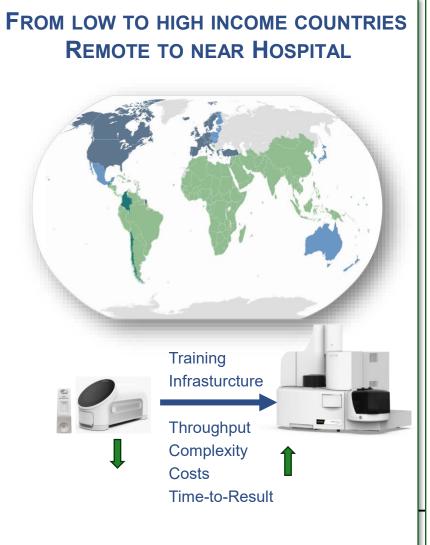
LifeCycle Leading risk calculation software for prenatal screening

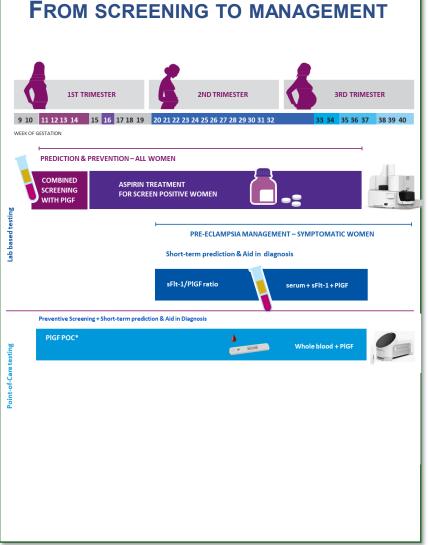
- Trusted system since 2000
- Over 800 users
- Supports all prenatal screening models
- Enables aneuploidy screening and pre-eclampsia screening

Simple, flexible and reliable LifeCycle™ Prenatal Screening risk calculation software

- Complete data management solution for prenatal screening laboratories
- ✓ Simple and flexible user interface with a performance monitoring dashboard
- ✓ Comprehensive Multiple screening strategies are supported
- ✓ Tailored to population Optimized risk calculation to your population
- ✓ Accessible Remote access for external users and connectivity to 3rd party applications
- ✓ Trusted solution over 20 years

Innovations for future


DIFFERENT NEEDS – DIFFERENT SOLUTIONS


TARGET CUSTOMERS

TARGET COUNTRIES

TARGET PATIENTS

These tests are typically sent to a hospital laboratory & it can take up to 24

hours to receive a result

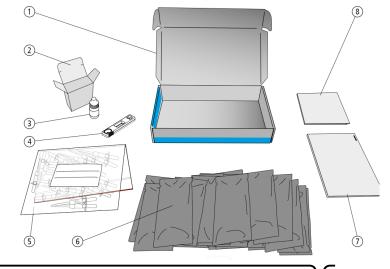
Data from Europe

80% of tests are sent to a hospital lab for analysis

Only 10% of respondents had access to an in-clinic analyser The time taken to receive tests results was significant

25% of respondents waited 24 hours

75% of respondents waited at least 4 hours 85% of respondents indicated that availability of a POC PIGF test would mean they would be more likely to routinely test PIGF between 11-14 weeks



RONIA[™] Platform

- Quantitative Placental Growth Factor (PIGF) results
- Portable reader (can run on batter)
- No maintenance/service
- No need for laboratory facilities
- Whole blood = no pre-treatment (centrifugation
 /laboratory skills) necessary. Serum also an option.
- 10µl sample volume
- No sample shipping: immediate results = fast treatment,
 effective care
- Short assay time (30 min), <2 min in the reader.
- Lot specific calibration enabled with RFID

RONIA[™] Platform

Result simply from whole blood finger prick

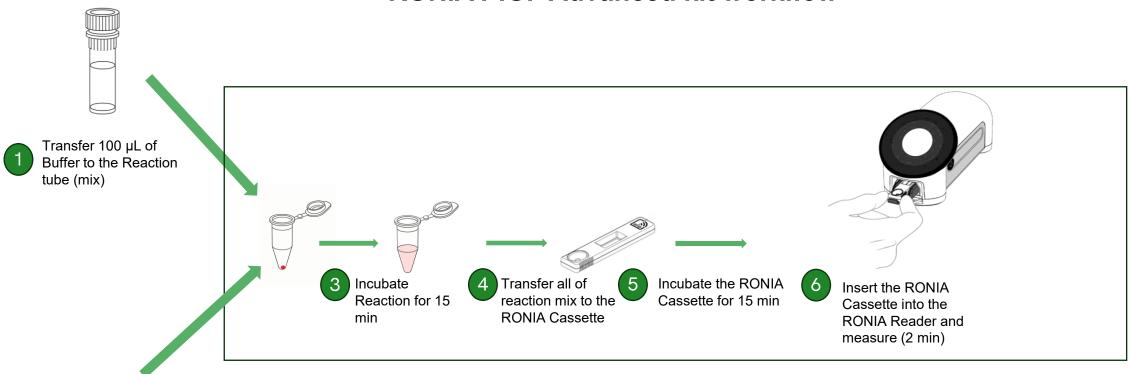
 Add buffer to reaction tube

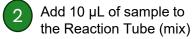
Collect finger prick sample

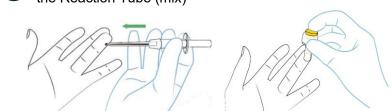
3. Add sample to the reaction tube - mix

4. Incubate 15 min

Add reaction to the cassette


6. Incubate another 15 min and measure


PIGF assay Total time ~ 30 min



RONIA[™] Platform

RONIA PIGF Advanced kit workflow

