# Il cellulare fa male? Pronti a fare da cavia 250mila europei 

Conto alla rovescia per "Missione Cosmos", un maxi studio per scoprire gli effetti dei telefonini sul corpo umano

Blackberry, smartphone, iPhone, sempre meno tascabili sempre più sofisticati, i tclefonini hanno conquistato davvero il mondoepocoimporta segliscienziaticontinuano a chiedersisefacciano male o meno, continuiamo a usarli come fossero parte indissolubile di noi, e adesso che attraverso il cellulare si naviga anche comodamente in internet, davvero ogni briglia al loro uso è stata sciolta. È proprio alla luce di questa tendenza inarrestabile che partela «missione Cosmos», un maxistudio per esplorare nel dettaglio l'universo dei cellulari e dei loro effetti sulla nostra salute.
Annunciatoieriinuna conferenzastampa, Cosmos-CohortStudy on Mobile Communications coinvolgerà 250.000 europei per 20-30 anni per stabilire in via definitiva se usare il telefonino siapericoloso per la salute o meno.

Coordinato da Paul Elliott delI'Imperial College di Londra, lo studio sarà condotto in Gran Bretagna ma coinvolgera anche persone in Svezia, Finlandia, Olanda eDanimarca edaràisuoi primissimi risultati in cinque anni.
Si tratta di uno studio globale che vuole vedere a 360 gradi gli effetti della radiazione elettromagnetica su di noi per cui prenderà in esame anchel'uso diWiFi, cordless e telemonitor per i neonati.
Per la prima volta, edè questa la grandedifferenza rispettoalleprecedenti ricerche, si guarderà il comportamento delle persone coi telefonini in tempo reale e se ne esaminerannole eventuali conseguenze a lungo termine, non solo
sulfronte tumori al cervello, bensì anche per malattie neurologiche come l'Alzheimer e anche per il cancro alla pelle, visto che oggi il telefonino è sempre più simile a un mini-computer su cui si digitano testi.
Oggi al mondo sono in uso 5 mi liardiditelefonini, eppurelagrande diatriba se i cellulari facciano o meno male alla salute sembra non avere tregua; studio dopo studioè stato detto più volte che i telefonini sono collegabili all'insorgenza ditumori al cervello e altrettante volte questo nesso cellularicancro è stato smentito.
L'ultima indagine, solo in ordine di tempo, sembra scagionare i cellulari, infattil'incidenza deitumori al cervello non è aumentata da quando itelefonini hannoinvaso il mondo, è emerso pochi mesi fa da un grosso studio pubblicato sul Journal of the National Cancer Institute da Isabelle Deltour delI'Istituto di Epidemiologia dei Tumori della Società Tumori danese a Copenhagen. Gli esperti hanno esaminato l'incidenza annuale di glioma e meningioma tra adulti di 20 anni e identificato 60.000 pazienti con diagnosi di tumore al cervello tra 1974 e 2003 ed è emerso che la frequenza dei tumori non è aumentata da quando impazza la telefonino-mania.
Il problema di questo e altri studi condotti finora con risultatioppostiè chesi tratta sempre di indagini retrospettive in cui si osservano pazienti con cancro e si cerca di vedere un nesso col loro precedente uso del telefonino.


## LE INIZIATIVE DELL'AIRC GRAZIE AL 5 PER MILLE

## Sessanta milioni e cinque progetti per battere il cancro

## Coinvolte oltre 400 per'sone tra clinici ericercatori <br> MILANO

Sessanta milioni dj euro per battere il cancro, con cinque progetti di ricerca che dovranno portare una cura dal laboratorio al letto del malato entro cinque anni. Questo permette di «fare un balzo in avanti, allineandoci alla ricerca più competitiva in campo oncologico, come gli Usa e il Regno Unito". L'Airc, l'associazione italiana per la ricerca sul cancro, mette a frutto le prime risorse raccoite dai contribuenti attraverso il 5 per
mille. Un sistema, quest'ultimo (anche se per ora l'associazione ha ricevuto i proventi del solo 2006 e $35 \%$ di quelli del 2007), che per il presidente di Airc, Piero Sierra, «permette investimenti concentrati di grande rilievo che assicurano alla ricerca oncologica un lungo respiro in condizioni di stabilità e continuità». Ad aggiudicarsi l'investimento sono stati i team di ricerca di oncologia molecolare clinica guidati da Federico CaligarisCappio, della Fondazione San Raffaele di Milano, Paolo Comoglio, del'Irce di Candiolo-Torino, Roberto Foà, dell'Università la Sapienza di Roma, Alessandro Massimo Gianni, della Fondazione Irces Istituto Nazionale dej Tumori di Milano, e Alessandro Vannucchi, dell'Università di Firenze. In tutto saranno 464 le persone coinvolte, tra clinici e ricercatori.
[F.SP.]


Le selezioni. Un comitato con i big Usa ha scelto i vincitori Gli obiettivi. Previsti risultati concreti nell'arco di cinque anni

# La nazionale della ricerca che vuol battere il cancro Finanziati dall'Airc cinque progetti all'avanguardia 

## di Nino Ciravegna

Sessantamilioni difinanziamenticoncentrati su cinque progetti d'avanguardia in grado di produrre risultati concreti secondo la regola "dal banco di laboratorio al letto del paziente". Venti istituti coinvolti, 464 ricercatori al lavoro: la nazionale anticancro scende in campo grazie ai fondi raccolti dall'Airc con il 5 per mille di oltre 800 mila contribuenti italiani. Una nazionale, con netta prevalenza per la ricerca nel campo dell'ematologia (dove l'Italia vanta una solidatradizione), chel'Aircschieragiocando con regole internazionali, spesso ignorate nel nostro paese. Con differenze pesanti. Danoigeneralmente iclinicilavorano sui pazienti mentre i ricercatori sono chiusinei laboratori, con topie provette: l'Airc ha imposto team integrati con medici, biologi, ricercatori purie tecnologi.
In Italia spesso-ci si arrangia tra amicie baroni, io doun premioate, tu sostieni i miei progetti: l'Airc ha affidato la selezione aunagiuriainternazionale con 17 big dell'oncologia Usa
e un inglese. Possibilità di arrangement:zero.Equasisempreifondiper laricercasidisperdonoin mille rivoli per non scontentare nessuno: l'Airc ha concentratoi60 milioni del $5 \times$ mille in progetti innovativi, scelti dalla commissione internazionale che ha esaminato 30 proposte preliminari e analizzatouprogettidettagliati.
Latradizionevuole cheiprofessori siano costrettia elemosinare annodo-poannofondi-anche dipochemigliaia di euro-che spesso arrivano in forte ritardo. Loro, la nazionale anticancro, potranno contare su cinque anni, Con una verifica approfondita, la site visit (altra anomalia nella ricerca italiana, dove latitano i sistemi di controlli intermedi e finali), dei risultati dopo tre anni.
Ora il programma speciale di oncologia mole-colareclinicapuòpartire,ivincitoriFedericoCaligaris Cappio, Paolo Comoglio, Roberto Foà,Alessandro Massimo Giannie Alessandro Vannucchi assicurano,pur conunsanorealismo:irisultatiarriverannoneitempi previstidal piano Airc.

Calprcdutione riserugta


Istituto San Raffaele di Milano Leucemia linfatica cronica e mieloma multiplo


Federico Caligaris Cappio 62 anni

Progetto: interazioni tracelluletumoralie microambiente: un bersagtio per strategie innovative nei disordini linfoproliferativi cronici
Team:17 gruppiall'istitutoscientifico:San Raffaeledi Milano, trea Parma, Bari, Pavia Ricercatori: 135

Lavorare sul microambiente dove si sviluppano le cellule tumorali per neutralizzare il cancro: questo l'obiettivo di Federico Caligaris Cappio, direttore del dipartimento clinico di oncologia dell'Istituto San Raffaele diMilano. «Ė sempre più evidente - spiega Caligaris Cappio, studi a Torino, lunghe esperienze negli Usa - che la crescita dei tumori utilizza le cellule circostanti, schiavizzandole.Eobbligandole a supportare la crescita del tumore. Noi ci concentreremo sul microambiente per nuove strategie destinate a combattere la crescita tumorale e controllarne laresistenza ai farmaci». Il progetto messo a punto da Caligaris Cappiopuntasullaleucemialinfaticacronica esulmielomamultiplo, entrambi incurabili. Ma è possibile arrivare in tempi brevia risposte concrete? «Lavoreremo su più fronti, dall'uso dimolecole chenon sonouti-
lizzate in questo campo, anuovi sistemi che contiamo di portare ai pazienti in tempi non biblici Inoltre pensiamo di utilizzare promettenticompostiin-house per manipolare il sistema vascolare del tumore».
Inoltre lo studio del microambiente permetterà, secondo Caligaris Cappio, dị sviluppare e applicare "marcatori molecolarmente definiti": <Dobbiamo capire imeccanismi di "dialogo" tra le cellule tumorali e quelle del microambiente. Potremo così monitorare quello che si può definire l'arruolamento, e anche l'intensità, delle cellule al servizio del tumore. Poche cellule arruolate cifarannoprevedereun andamento lento della malattia. Più dialogo, invece, significa un'evoluzione aggressiva del tumore.Questo cipermetterà dimodulare leterapie salvaguardando, laddove pośsibile, la qualità della vita».

## Ircc - Fondazione del Piemonte perl'oncologia di Candiolo Carcinomi del colon-retto



Paolo Comoglio 65 anni .

Progetto:terapie mirate nel cancro metastatico del colon-retto
Team: Istituto per la ricerca e cura del cancro diCandiolo (Torino) eospedale Niguarda-Ca' Grandadi Milano
Ricercatori: 97

Paolo Comoglio dal gennaio 2009 è direttore scientifico dell'Ircc, Fondazione del Piemonte per l'oncologia di Candiolo, Torino. Laureato a Torino, è stato a lungo negli Stati Uniti dove si è specializzato in immunologia. Comoglio ha messo a punto unprogetto sull'evoluzione clinica di ricercheiniziate vent'anni fa, che hanno portato alla scoperta di geni che controllano i segnali della "crescita invasiva". «Il nostro vanto-spiega-èl'oncogene Met».

Il progetto è focalizzato sui carcinomi metastatici del colon-retto: «Ci siamo accorti che le cellule tumorali hanno continue e fortimutazioni. Mal'esperienza cidimostra che se si colpisce il capofila il resto siaffloscia, muore.Ecco, noi dovremoindividuare l'alterazione "capobanda" per annientarla con azioni molto mirate».

Con le terapie tradizionali, infatti, si rischia di intervenire su alterazioni "secondarie" con basse possibilità di riuscita perché le cellule diventano, mutazione dopo mutazione, più resistenti.Daquila necessità di trovare nuove molecole. Conun misurato ottimismo: «I tempi e le informazioni fin qui raccolte - assicura il direttore Ircc ci permettono di fare il balzo verso la terapia mirata: ragionevolmente riteniamo di poter portare i risultati al paziente nell'arco della durata del progetto».

Il primo passo ora è nella formazione di clinical research assistant che si dovranno dividere tra il laboratorio e il letto del malato: saranno un centinaio (44 medici, 33 biologie 15 tecnici) articolati in undicigruppidiricerca, diecia Candiolo, uno al Niguarda-Ca' Granda di Milano.

Università La Sapienza di Roma Neoplasie linfoidi acute e croniche


Progetto: gestione clinica mirata guidata dalle caratteristichegenetiche nelle neoplasie
Team: Università díRomá, Perugia, Bologna, Torino, Novará Istituto superiore della sañità di Roma
Ricercatori: 75

Roberto Foà è il direttore della divisione di ematologia della Sapienza di Roma. Papà di Torino (dove si è laureato), mamma inglese, lunghe esperienze internazionali,Foàhamesso a puntoun progetto «fortemente tecnologico» per le neoplasie linfoidi acute e croniche: «Abbiamo coinvolto - spiega- sei team, tra cuil'Istituto superiore di sanità per sequenziare il genoma delle cellule tumorali. La genetica è fondamentale per capire l'evoluzione dei tumori e , al tempo stesso, ci aiuta ad aprire nuovi scenari per diagnosi, prognosi e terapia».

La mappatura in grandi quantità permetterà anche di stratificare-raggruppare alterazioni in modo da organizzare e catalogare sottogruppi sempre più specifici. Si passerà, in sostanza, da malattie "ampie" a diagnosi mirate: «Saremo in
grado diarrivare aindividuare, conestrema precisione, nuove alterazioni». La mappatura genomica dovrebbe favorire, secondo Foà, l'estensione di terapie già collaudate in altre forme leucemiche. Il sogno? «Capire i meccanismi genetici e mettere a punto innovative terapie personalizzate, superando la chemioterapia».

Foà è ottimista sui possibil risultati: «Il nostro progetto prevede diespandereil "ge-netics-driven targeted management" di pazientiaffettidaneoplasielinfoidi. Èrealisticoprevedere cheiprimi risultatiarriveranno in clinica nei prossimitre anni».

Foà si prepara ad arruolaree far crescere professionalmente «una nuova generazione di "medici scienziati", fondamentali per l'ulteriore sviluppo della ricerca traslazionale nel nostro paese».

Istituto nazionale dei tumori di Mitano Cellule staminali killer
 effettori citotossicigeneticamente armati con Trailofenotipicamente indirizzatia bersaglio
Team: Istituto nazionaletumori, Luniversità di Milano, San Raffaele, GaslinidiGenova, Istituto superiore di sanità di Roma Ricercatorit: 89

Cellule staminali killer che uccidono selettivamentele cellule dei tumori:Alessandro Massimo Gianni, dell'Istituto nazionale dei tumori di Milano, ha scelto una strada innovativa contro il cancro, con studi avviati anni fa e che - completata la fase pre-clinica - erano stati interrotti per la mancanza di fondi.

Che cosa si intende per cellule staminali killer? «Siamo partiti dalle cellule emopoietiche, che hanno la tendenza specifica a localizzarsidove c'e il tumore. Queste cellule non interferiscono con quelle tumorali, anziinqualchemodolostimolano e lo alimentano. Noi le trasformiamo geneticamente: introduciamo un gene che attaccale membrane delle cellule tumorali, uccidendole. Perquesto parliamo dikillero, meglioancora, di cellule staminali armate».

Come si ricavano le cellule staminali
emopoietiche? «Queste cellule sono prodotte dal midolloosseo e sitrovano ingrande quantità nel sangue periferico. Si tratta quindidifare unnormale prelievo, bombardare questo campione infettandolo e riiniettarlo nel corpo del paziente».

Funzionerà?Ilprofessor Giannièottimista: «Non siamo in una fase teorica. Negli esperimenti sui topi, utilizzando sangue umano, abbiamo ottenuto risultati addirittura superiori alle previsioni. Ovviamente ora si tratta diprocedere, con tutte le dovute cautele, sull'uomo. Si tratta diun progetto molto ambizioso, anche perché questo sistema potrebbe essere utilizzato per tutte le forme tumorali. Dovxemo mettere a punto sistemi meno complessi e più sicuri, magari trovare proteine più efficaci, ma grazie ai fondi Airc avremo la possibilità di percorrerefino in fondo questa strada».

## Università di Firenze Neoplasie mieloproliferative croniche



## Alessandro Vannucchi 52 anni

Progetto: una piattaformaintegrata per studidigenetica molecolare eperlà spermentazonedinica ne disordini. mietoproliferativicronic
Temini Università di Firenze, Policlinico San
Matteo di Pavia, Ifomdi Mitano, università di
Torino, Modena, OspedalidiBergamo
Ricercatori:68

Alla caccia di tumori poco conosciuti e per questo diagnosticatipoco correttamente. Alessandro Vannucchi, professore associato di ematologiaall'Università di Firenze e coinvolto in numerosi progetti internazionali, si concentra sulle neoplasie mieloproliferative croniche: «Si tratta di forme tumorali croniche che permettono sopravvivenze lunghe, ma che spesso - se nonindividuate in tempo-rischiano dicausare problemi più gravi. Solo in Italia sono dai 500 ai 700 mila malati, ma la stima è in difetto, soprattutto nei soggetti adulti».

Tre le forme tumorali allo studio: policitemiavera, trombocitemia essenziale, mielofibrosi primaria. «Ci concentreremo sullaricerca molecolare per individuare igeni responsabili delle alterazioni, seguire la crescita tumorale, migliorare le tecniche diagnostiche esviluppare nuove terapie».

Si tratta di un campo di ricerca relativamente nuovo: «芒quasi un deserto, il primo passoè iniziato cinque annifa conlascoperta del gene alterato Jak2. Da allora sono stati sviluppati i primi farmaci, ma ora sappiamócheJak2 nonènonl'unico che porta alterazioni alle cellule».

Allo sviluppo di protocollie di farmaci sperimentali parteciperanno, oltre al team di Firenze, sei gruppi (Pavia, Torino, Bergamo, Modena, Ifom di Milano) per un totale di 68 ticercatori.
Il progetto messo a punto da Vannucchi prevede anche un sito web per tenere informato il mondo scientifico sui progressi delle ricerche e, al tempo stesso, informare i pazienti: «Sarà un modo concreto per conoscere correttamente sintomi, diagnosi e nuove forme terapeutiche nel segno della trasparenza».

## Thmyaniva

Sessantamilioni per laricerca, coinvolti 464 scienziati

# Cinque progettiperbattere il cancro con isoldi del 5permille all' Airc 

MILANO - L'obiettivo è ambizioso: si tratta di «addomesticare» le cellule staminali cattive dei tumori, geneticamente modificate, per armarle contro il cancro. $\grave{\text { E }}$ questo uno dei 5 progetti, finanziati con i fondi del 5 per mille dall'Airc, l'Associazione italiana per la ricerca sul cancro. Con 60 milioni in 5 anni sono stati coinvolti 464 ricercatori in due centri di Milano, uno di Torino, uno di Romae uno di Firenze. Dovranno trovare nuove terapie e avviare i primi test sull'uomo. Il progetto delle staminali trasformate in "pallottole anticancro", da sperimentare su 20 pazienti, è di Alessandro Massimo Gianni dell'Istituto dei tumori di Milano. Gli altri 4 studi tenteranno altre strade per battere il cancro. Federico CaligarisCappio del San Raffaele, si impegnerà sul fronte delle leucemie: «Il tumore è come un'orchestra dove il direttore schiavizza le cellule sane per far crescerequelletumorali.Sitrattadibloccarequesto meccanismo». Paolo Comoglio, dell'Istituto per la ricerca sul cancro di Torino, mira a "spe-gnere" le lesioni primigenie del tumore del colon retto. Gli ultimi due studi, sono firmati da Roberto Foà della Sapienza di Roma (studierà il codice genetico dei tumori linfoidi) e Alessandro Vannucchi dell'Università di Firenze (cercherà nuovibersagliperleterapieneitumorimieloidi).(l.a.)

Salute Gli studi finanziati dall'Associazione italiana per la ricerca sul cancro con i fondi del 5 per mille Staminali «armate» contro i tumori
Iniettate nel paziente per guarirlo. Sessanta milioni per cinque progetti

MILANO - Cellule staminali modificate geneticamente per colpire il tumore. II primo paziente sarà trattato nei prossimi tre anni. Poi altri 18-20 nei due anni successivi. Il progetto di Alessandro Massimo Gianni, dell'Istituto dei tumori di Milano, è uno dei cinque studi quinquennali di Oncologia molecolare clinica finanziati dall'Associazione per la ricerca sul cancro (Airc) grazie al 5 per mille dei contribuenti. In tutto 60 milioni di euro. Progetti top, selezionati da una commissione di 18 revisori, tutti stranieri. Progetti che senza l'Airc avrebbero avuto grosse difficoltà, a partire dalla logica italiana del finanziamento alla ricerca. E dai lacciuoli burocratici che, allungando tutti i tempi, alla fine fanno desistere i «cervelli» italiani. Spiega Gianni: «Mai successo di partire subito con più di 8 milioni đi euro e di essere sicuri in fondi per cinque anni».
Qual è l'idea speciale di Gianni\&C? Si è partiti dall'osservazione che le staminali adulte della linea del sangue (emopoietiche) una volta iniettate nei pazienti hanno un'attrazione per le cellule tumorali. E che quelle tumorali, di qualsiasi tumore si tratti, nel-l'80-90 per cento dei casi hanno un recettore per una proteina naturale, Trail, in grado di ucciderle. Ma questa proteina non ha di per sé l'attrazione fatale verso il bersaglio, né riesce numericamente ad essere efficace. Ecco allora la soluzione italiana: «Armiamo le staminali con Traib). E così è stato.

Grazie ad un virus disattivato (unadenovirus) il dna che produce Trail è stato inserito nelle staminali adulte. Insomma sono state create staminali Ogm. Queste, una volta moltiplicate e reiniettate nel paziente, vanno ad agganciare le cellule tumorali e, con Trail, innescare in queste il «suicidio» (apoptosi). Efficacia e innocuità già verificate, sugli animali, ora può partire la sperimentazione sull'uomo. All'inizio in pazienti che non rispondono ad altre cure. «Senza i fondi Airc, però, non saremmo mai andati avanti》, confessa Gianni. Coinvolti nel progetto anche il San Raffaele di Milano, l'Istituto superiore di sanità, il Gaslini di Genova. 11 Baylor College of Medicine di Houston, che ha modificato le staminali.
Da oggi partono tutti e cinque i Programmi speciali vincenti, tutti giudicati eccezionali da un guru dell'oncologia mondiale, Robert Bast, dell'Anderson Cancer Center di Houston, che a nome dei 18 revisori commenta: «Siamo rimasti profondamente impressionati dalla qualità delle proposte e dalla loro potenzialità di migliorare le cure. Un attestato d'eccellenza per la ricerca italiana sul cancro». In effetti, per la Commissione dei Revisori la prova non è stata facile: da dieci programmi, giudicati fuori dal comune, selezionarne solo cinque. II numero massimo indicato dal bando.

If filo conduttore, innovativo, richiesto era il lavoro di équipe in un filo diretto tra la-
boratorio e corsia: le scoperte subito applicabili, le terapie spesso personalizzate. I ricercatori alla guida dei progetti vincitori, oltre ad Alessandro Massimo Gianni, sono: Federico Caligaris-Cappio (San Raffaele di Milano) che intende colpire il «direttore d'orchestra» del tumore e gli ordini che impartisce; Pago Comoglio (Istituto di Candiolo-Torino, insieme al Niguarda di Milano) sul co-lon-retto e i geni che controllano la crescita invasiva; Roberto Foà («La Sapienza» di Roma ) sulle neoplasie linfoidi acute e croniche (coinvolte le università di Perugia, Bologna, Torino, Piemonte Orientale); Alessandro Vannucchi (università di Firenze, con il Policlinico di Pavia, Modena, Reggio Emilia e gli Ospedali Riuniti di Bergamo) su genetica molecolare e sperimentazione clinica nei disordini mieloproliferativi cronici. In totale 464 persone coinvolte, tra clinici e ricercatori. I primi di un nuovo corso della scienza italiana. Per ora avviato dall'Airc.

Mario Pappagallo


## La sperimentazione

Le cellule staminali adulte della linea del sangue vengono manipolate geneticamente per attaccare i tumori


Il prellevo
Le staminali adulte vengono prelevate dal midollo osseo
del paziente


Il primo paziente verrà trattato con questa tecnica entro tre anni, altri 18-20 nel biennio successivo

## 15 progettitup

Fhanziat dallairc
grate al 5 per
mille sonostat
seezionatita:
una commissione
d 18 valutatort
stranlit

## 69 milloni di

auro elo
stanzlamento
ber 5 ain


```
Il seme della medicina
leucemia Arrivano
dalle piante gli antitumorali
del futuro: sembra in grado
diuccidere le cellule
di leucemie e linfomi la nuova
molecola ibrida derivante
da una tossina estratta dai
semi della Saponaria officinalis,
erba molto diffusa anche in
Italia. A crearla sono stati
ricercatori dell'Istituto
di Biologia e Biotecnologia
Agraria del Cnr di Milano
(ibba.cnr.it), con le università
di Verona, L'Aquila
e Southampton. «La molecola,
nata dall'unione tra la tossina
vegetale e un frammento
di proteina che la indirizza
verso il tumore, è stata
ideata con un metodo
sperimentale, che prevede
l'uso di cellule di lievito
(simile a quello usato
per la pizza)" spiega
Aldo Ceriotti dell'Ibba-
Cnr di Milano. Questo
procedimento impedisce alla
nuova cellula di "riconoscere"
tessuti diversi da quelli
del tumore e di danneggiarli.
«I lieviti consentono
inoltre una produzione su
larga scala a costi contenuti,
conclude Ceriotti.
Sono ora in partenza
sperimentazioni sugli animali
per confermare l'efficacia
terapeutica della molecola.
```

    E.M.
    Screening per tutte
mammografia L'89 per cento delle donne che vivono al Nord riceve linvito periodico per il controllo mammografico, il 77 al Centro e solo il 38 per cento al Sud. Per uniformare tempie modi dello screening in tutta Italia è stata presentata una mozione in Parlamento: se ne parlerà, a Roma, al Convegno dell'Associazione SaluteDonna (salutedonnaweb.it). ${ }^{\text {aN }}$ Non basta acquistare nuove, sofisticate apparecchiature, come il mammografo digitalen commenta Paolo Marchetti, direttore di Oncologia medica alla
Sapienza di Roma. «Occorre rimuovere ostacoli organizzativi e culturali: significa migliorare ovunque le strutture, veicolare meglio l'informazione e spingere tutte le over 50 a sottoporsi alla mammografia ogni due anni. Un ritardo nella diagnosi potrebbe ridurre dal ro al 40 per centola possibilità di sopravvivenza. In più, è necessario promuovere negli ospedali le Breast Unit in cui équipe di specialisti (chirurgo, oncologo, radiologo, psicologo) si dedichino alle donne con tumore al seno.

# CONTRORDINE (en NONSIBEIEVENA seminnta shock 

Marie-Claire King aveva scoperto alcune muturiomi genetiche utili alla ricera sul cancro. Ora vince in tribumale contro le lobby biotech Usa, che. vendono iteste ci di Sylvie Coyaud

II 29 marzo, in un tribunale federale di New York il giudice Robert Sweet dichiara invalidi due brevetti concessi alla Myriad Genetics di Salt Lake City in cui le viene riconosciuta la proprietà esclusiva dei geni BRCA-1 e BRCA-2, delle loro mutazioni, di qualunque metodo per analizzarli. Fanno parte dei 23 brevetti che puntellano il test Myriad, costo 3mila dollari, in vendita dall'inizio del secolo. Le azioni della società perdono valore nonostante i suoi comunicati rassicuranti in cui afferma, correttamente, che non sarà quello a portarla al fallimento. Comunque ricorrerà in appello con l'appoggio della federazione delle imprese biotech. La quale commenta che in un momento di crisi non sarebbe opportuno scoraggiare la proprietà intellettuale di cui gli Stati Uniti sono il primo esportatore al mondo.
Dall'udienza preliminare nel maggio scorso lo ritengono opportuno migliaia di americani. Associazioni di biologi, medici, pazienti, volontari, donne sparse ma arrabbiate, fondazioni per la ricerca contro il cancro e per il libero accesso ai brevetti hanno fatto causa non a Myriad Genetics, bensì all'Ufficio brevetti degli Stati Uniti per aver tutelato come "invenzione dell'ingegno" un "prodotto della natura". A coordinarli l'American Civil Liberties Union (Aclu), famosa per la lotta contro la segregazione razziale. La sentenza, ha detto il suo portavoce, è «una

buona notizia per il popolo americano». Anche per gli altri. Quel "monopolio sul vivente" è applicato in tutti i paesi dell'Organizzazione mondiale del commercio, meno la Francia e quelli dove il rispetto della legge è un optional. Persino il romanziere Michael Crichton, che con gli anni era diventato reazionario e diffidava degli scienziati, era andato al Congresso nel 2007, un anno prima di morire, per dire che quei brevetti erano una mostruosità.
La pensava allo stesso modo Mary-Claire King, la scienziata oggi all'Università di Washington a Seattle, che nel 1990 ha scoperto il gene BRCA-1 e le sue mutazioni pericolose. Non avrebbe mai immaginato che sarebbe stata d'accordo con un repubblicano e amico del presidente Bush, per di più. Il paradosso è che Crichton non aveva brevetti, lei ne ha quattro e sono usati anche nel test Myriad. Riguardano i "marcatori genetici", molecole che consentono di localizzare le sequenze di Dna mutato, e li dà gratuitamente agli enti di ricerca, agli esperti del Tribunale internazionale dei crimini contro l'umanità, addi-

## rittura ai movimenti di protesta.

Un sorriso da ragazzina discola e 64 anni, nell'ambiente della genetica umana - e dei primati in generale - è una star. Era stata lei a calcolare, per la tesi di dottorato nel 1973, che noi e gli scimpanzé abbiamo il 99\% di geni in comune, e che le differenze non sono nel Dna ma nelle molecole che ne modificano l'attività. Ci era arrivata con la teoria dell'evoluzione ed equazioni complicatissime. D'altronde si era laureata in matematica a 19 anni poi aveva scelto la biologia: le pareva più utile contro le guerre e le ingiustizie alle quali è "allergica".
Nell'estate del 1973 insegnava all'Università di Santiago per sostituire i docenti americani tornati a casa pur di non collaborare con il governo socialista di Allende, ha visto i militari cileni rastrellare i suoi studenti. All'inizio degli anni Ottanta era a Buenos Aires, dalle nonne della Plaza de Mayo che cercavano di rintracciare i nipotini desaparecidos. Dalle gocce di sangue prelevate ai parenti ha creato un test per accertare in quale famiglia erano nati i ragazzi che i militari rivendicavano come figli propri. Con un test simile ha smentito il presidente Reagan, dimostrando che erano le milizie allenate dall'esercito americano ad aver sterminato i 750 abitanti di un villaggio del Salvador. E così in Bosnia, in Ruanda, e in California non lontano dalla tenuta di Michael Crichton che detestava quella militante verde, insieme con i braccianti messicani che si ammalavano di tumore nei campi irrorati con erbicidi e pesticidi. Per loro, ha deciso di ottenere dei brevetti. Così nessuno può sfruttare il suo lavoro.
E allergica anche al marketing. Le hanno provocato la nausea i cartelloni di Myriad Genetics sui quali una bionda invita le donne a farsi prescrivere il test sotto lo slogan "Be Prepared". L'anno scorso si sono preparate in 38 milioni, anche da noi, dove l'Ufficio brevetto europeo ha riconosciuto il monopolio sul gene BRCA-1 nel 2001. Solo i laboratori Myriad possono analizzare il Dna prelevato con il kit Myriad e da rispedire al mittente. Solo loro possono comunicarne il risultato: una percentuale di rischio, non una diagnosi. In Francia si sono ribellati il Ministero della sanità, quello della ricerca, i genetisti delI'Istituto Curie che avevano collaborato con Mary-Claire King nella scoperta del gene. Altri servizi sanitari nazionali si sono mobilitati, alla commissione scienza del Par-
 lamento europeo si sono scontrati fautori della proprietà privata e fautori della sanità pubblica e di test decenti. I secondi hanno perso, ma le loro motivazioni scientifiche sono state sentite fino a Salt Lake City perché Myriad ha cercato di appropriarsi del brevetto sul gene BRCA2. Scoperto anche questo da King con ricercatori dell'Università di Cambridge, la quale aveva concesso il brevetto a un suo
spin-off. Comprato da Myriad cui il Patent Office di Washington ha riconosciuto la proprietà anche di quel brevetto. Ma Cambridge ha fatto valere davanti all'Ufficio brevetti europeo che lo spin-off l'aveva solo in licenza e I'ha regalato alla Cancer Research UK, una fondazione senza scopo di lucro che finanzia la ricerca in oncologia.
A Mary-Claire King non è bastato, voleva indietro tutti i "suoi" geni. Ha aiutato i ricercatori dell'Istituto

## Orale <br> aziende stanno facendo una campagna meduatica che dipinge a. dottoressa e 1 Suol sostenutori come agitatori comunisti

 Curie a formulare un test più preciso, che sarà pure in violazione della legge sui brevetti e delle regole dell'Organizzazione mondiale del commercio, ma alla Sécurité sociale, e alle donne straniere che vengono per consultazioni private, costa soltanto 650 euro. Oltre a procurarle l'allergia, l'ingiustizia delle americane araggirate" (pagano quattro volte tanto per un test superato) le ha «fatto bene alla creatività», dice lei. Deve essere vero. Nel 2004 ha pubblicato sulla rivista Science un articolo in cui identificava decine di mutazioni, su altri sette geni, che concorrono al cancro al seno e alle ovaie. La scoperta è importante di per sé, e per il test Myriad, una condanna scientifica. Per quella giuridica ha dovuto attendere la sentenza lunga 156 pagine (si trova online su aclu.org) che ha lasciato a bocca aperta tutti gli analisti, compreso John Conley del Genomics Law Report, una pubblicazione specializzata in genomica e diritto. Incredulo e «sbalordito dalla radicalità e dalla portata della decisione», ha intitolato il proprio saggio "Porci con le ali". Per l'appello però la sua prognosi è infausta. Gli avvocati dell'Aclu prevedone pressioni sui magistrati e una campagna mediatica miliardaria da parte della lobby biotech in cui i gruppi dell'accusa saranno dipinti come agitatori comunisti. Per evitarlo, fin qui hanno condotto un "processo pro-America" invocando una clausola costituzionale che i brevetti sui geni umani violerebbero. II giudice Sweet ha respinto l'argomento, non potranno usarlo di nuovo.Mary-Claire King che se è una comunista esagitata lo nasconde sotto molti strati di charme, ne ha uno di riserva. Insieme con la sentenza di primo grado ha ricevuto un regalo da tre ricercatori bio-statistici e bio-informatici dall'università Duke nel North Carolina. Hanno passato al setaccio le banche dei geni gestite da enti pubblici americani e internazionali. Sorpresa: erano già depositate da anni le sequenze di nucleotidi che, nella sua richiesta di brevetto Myriad descriveva come "nuove". Un'informazione che per statuto il Patent Office doveva controllare. Prima di decidere se ricorrere in appello anch'esso dovrebbe leggere l'ultimo numero della rivista Genomics, in particolare l'articolo intitolato con brutale sarcasmo "Metastasi del brevetto per il gene BRCA-1".

